Math, asked by monstershreyas558, 2 months ago

14. Prove that
 \sqrt{3}
is an irrational number.​

Answers

Answered by Anonymous
33

Step-by-step explanation:

let \: us \: assume \: that \:  \sqrt{3} \:  is \: not \: irrational \:  \\ therefore \:  \sqrt{3}  \: is \: rational \: . \\   \sqrt{3}  =  \frac{a}{b} \:  \:  \: b \: not \: equal \: to \: 0 \: and \: a \: b \: are \: co \: primes \:  \\ squaring \: on \: both \: sides \:  \\ ({ \sqrt{3} })^{2}  =    | \frac{a}{b} |  {}^{2}  \\ 3 =     \frac{a {}^{2} }{b {}^{2} }  \\  {3b}^{2}  =  {a}^{2}  \\  {a }^{2}  = 3 {b}^{2}  \\  {a}^{2}  \: divde \: 3 \\ a \: divide \: 3 \\ now \:  \\ let \: a \:  = 3c \: . \\ substitute \: a = 3c \: in \:  {a}^{2}  = 3 {b}^{2}  \\ (3 {c}^{2} ) = 3 {b}^{2}  \\ 9 {c}^{2}  = 3 {b}^{2}  \\ 3 {c}^{2}   =  {b}^{2}  \\  {b}^{2}  = 3 {c}^{2}  \:  \\  {b}^{2}  \: divide \: 3 \\ b \: divide \: 3   \\ from \: equation \:  \: 1 \: and \: 2 \: a \: \: and \: b \: are \: common \: factor \: of \: 3 \\ this \: contradiction \: arisen \: because \: of \: our \: wrong \: assumption \: that \:  \sqrt{3}  \: is \: rational \:  \\ there fore \:  \sqrt{3}  \: is \: irrational \:  \\ hence \: proved

Similar questions