14) Prove the cosine rule using the projection rule.
Answers
Answered by
2
here is your answer
mark as brainleast
Attachments:
Answered by
4
To Prove
(a) a = b cos C + c cos B
(b) b = c cos A + a cos C
(c) c = a cos B + b cos A
Explanation:
Using Law of cosines
We have cos A = [ (b² + c² - a²) / 2bc]
cos B = [(c² + a² - b²) / 2ca]
cos C = [(a² + b² - c² )/ 2ab]
(a) b Cos C + cs B
= [(a ²+ b² - c²) / 2ab] + c[(c² + a² - b²)/ 2ca]
= [(a² + b² - c² + c² + a² + b²)/ 2a]
= 2a²/ 2a
= a
(b) c cos A + a cos C
= c[( b² + c² - a²) / 2bc] + a[( a² +b² - c²) / 2ab]
= [(b² + c² - a² + b² - c²) / 2b]
= 2b² / 2b
= b
(c) c = a cos B + b cos A
= a [( c² + a² - b²) / 2ca] + b [ (b² + c² - a²) / 2bc]
= [(c² + a² - b² + b² + c² - a²) / 2c]
= 2c² / 2c
= c
Hence proved
c = a cos B + b cos A
Similar questions