Math, asked by rehadewan08, 1 month ago

14. Show that :- x-¹+y-¹/x-¹ + x-¹-y-¹/x-¹ = x²+y²/xy.

pls solve
don't spam ​

Answers

Answered by ItzImran
29

\huge\color{blue}\boxed{\colorbox{black}{Answer : ♞ }}

 =  >  \:  \frac{ {x}^{ - 1} +  {y}^{ - 1}  }{ {x}^{ - 1} }  +  \frac{ {x}^{ - 1} -  {y}^{ - 1}  }{ {y}^{ - 1} }

  =  >  \: \frac{ \frac{1}{x} +  \frac{1}{y}  }{ \frac{1}{x} }  +  \frac{ \frac{1}{x} -  \frac{1}{y}  }{ \frac{1}{y} }

 =  >  \:  \frac{x + y}{xy}  \times x \:  +  \frac{y - x}{xy}  \times y

  =  >  \:  \frac{x + y}{y}  +  \frac{ y- x}{x}

 =  >  \:  \frac{x(x + y) + y(y - x)}{xy}

 =  >  \:   \frac{ {x}^{2} +xy +  {y}^{2} - xy   }{xy}

 =  >  \:  \frac{ {x}^{2}  +  {y}^{2} }{xy}

 =  >  \: \color {green}RHS

</p><p>\huge\color{red}\boxed{\colorbox{yellow}{Hence proved }}

Answered by ꜱᴄʜᴏʟᴀʀᴛʀᴇᴇ
67

  \large \sf  \green{HOPE} \:  \pink{THIS}  \: \blue{IS \: HELPFUL}  \: \red{FOR \: YOU}

Attachments:
Similar questions