Math, asked by akshaya12378, 5 months ago

14. Simplify :
(i)(a/2b+2b/a)²-(2b/a-a/2b)²​

Answers

Answered by Anonymous
14

Step-by-step explanation:

 {( \frac{a}{2b}  +  \frac{2b}{a} )}^{2}  -  {( \frac{2b}{a} -  \frac{a}{2b}  )}^{2}

 = ( { \frac{ {a}^{2} + 4 {b}^{2}  }{2ab})}^{2}  -  {( \frac{4 {b}^{2} -  {a}^{2}  }{2ab} )}^{2}

 = \frac{{ ({a}^{2} + 4 {b}^{2})  }^{2}}{ {(2ab)}^{2} }  -  \frac{ {(4 {b}^{2} -  {a}^{2}  )}^{2} }{  {(2ab)}^{2} }

  = \frac{{a}^{4}  + 16 {b}^{4}  + 8 {a}^{2} {b}^{2} }{4 {a}^{2} {b}^{2}  }  -  \frac{16{b}^{4}  +  {a}^{4}  - 8 {a}^{2} {b}^{2} }{4 {a}^{2} {b}^{2}  }

 =  \frac{{a}^{4}  + 16 {b}^{4}  + 8 {a}^{2} {b}^{2} -  {a}^{4}   - 16 {b}^{4}  + 8 {a}^{2} {b}^{2} }{4 {a}^{2} {b}^{2} }

  = \frac{8 {a}^{2}  {b}^{2}  + 8 {a}^{2}  {b}^{2} }{4 {a}^{2} {b}^{2}  }

  = \frac{16 {a}^{2}  {b}^{2}}{4 {a}^{2} {b}^{2}  }

 = 4

Answered by snehaprajnaindia204
8

Step-by-step explanation:

The above answer will surely help You....

Similar questions