Math, asked by chhotis338, 19 days ago

14. The anges of a tiangde are in the ratio 5:4:3. Find measure of each angle​

Answers

Answered by chandubana1977
2

Answer:

please mark me as brainlist

Attachments:
Answered by BrainlyResearcher
22

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\huge{\underline{\underline{\color{red}{\bf{Question}}}}}}

The angle of a triangle are in ratio 5:4:3 find the three angle.

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\huge{\underline{\underline{\color{green}{\bf{Answer}}}}}}

\sf{1st\:angle=75^o}

\sf{2nd\:angle=60^o}

\sf{3rd\:angle=45^o}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

  • To Find-All Three angles by the help of Ratio

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\bf{Given:}}}}}

  • Ratio of Angles=5:4:3

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\bf{Explaination:}}}}}

Let the Ratio as 5x.4x and 3x

{\large{\underline{\underline{\color{red}{\bf{Angle\:Sum\:Property\:of\:triangle:}}}}}}

  • Sum of all angles of triangle will always equal to \rm{180^o}

{\therefore{\underline{\sf{5x+4x+3x=180^o}}}}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\quad{\qquad{\qquad{\sf{5x+4x+3x=180^o}}}}}

{\quad{\qquad{\qquad{\sf{9x+3x=180^o}}}}}

{\quad{\qquad{\qquad{\sf{12x=180^o}}}}}

{\quad{\qquad{\qquad{\sf{12x=180^o}}}}}

{\quad{\qquad{\qquad{\sf{x=\frac{180}{12} }}}}}

{\quad{\qquad{\qquad{\boxed{\color{red}{\sf{x=15}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\color{blue}{\bf{Answer}}}}}}

{\large{\sf{5x=5\times 15:\implies 75}}}

{\large{\sf{4x=4\times 15:\implies 60}}}

{\large{\sf{3x=3\times 15 :\implies 45}}}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\color{orange}{\bf{Confirming:}}}}}}

{\large{\sf{Put\:all\:values\:In\:place\:of\:ratio}}}

{\large{\sf{75^o+60^o+45^o=180^o}}}

{\large{\sf{135^o+45^o=180^o}}}

{\large{\sf{180^o=180^o}}}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\rm{Hence,Proved\:The\:one\:angle\:is\:75°,\:second\:angle\:is 60°\:and\:third\:angle\:is\:45°}}}

\begin{gathered} \\{\underline{\rule{200pt}{3pt}}} \end{gathered}

Similar questions