Math, asked by salilparvathy, 2 months ago

14. The diagonal of a quadrilateral shaped field is 24 m and perpendicular dropped on it from the remaining opposite vertices are 6 m and 12 m. Find the area of the field answer is 216 sq m. I need steps​

Answers

Answered by Yugant1913
10

 \huge  \underline\pink{Give : }

  • The diagonal of a quadrilateral shaped field is 24 metre.
  • The perpendiculars dropped on it from the remaining opposite vertices are 8 metre and 13

 \huge \underline \pink{To \: find:}

  • The area of the quadrilateral shaped field.

 \huge  \underline\green{Solution:}

Let's assume the □ ABCD to be the quadrilateral shaped field.

AC = Diagonal of the quadrilateral measuring 24 m

BE and FD are two perpendiculars dropped on it from the remaining opposite vertices.

BE = 6 m

FD = 12 m

The field is divided into two triangles, Δ ABC and Δ ACD

About Δ ABC :-

Base = AC = 24 m

Height = BE = 6 m

About Δ ACD :-

Base = AC = 24 m

Height = FD = 12 m

Now using the data for two triangles we will calculate the area of the triangles and then sum their areas to find the area of the field.

Area of Δ ABC,

We know that area of a triangle is calculated using the formula,

Area of triangle=1/2 ×base × height

Plug in the values,

 \bf \: A (Δ ABC) = \large\frac{1}{2}× AC × BE

 \bf \: A (Δ ABC) = \large\frac{1}{ \cancel{2}} ×  \cancel{24 }   × 6

 \bf \: A (Δ ABC) = 12 × 6

 \bf \: A ( Δ ABC) = 72sq. m \\  \\  \bf \: A (Δ ABC) = 72 m²

Similarly we will calculate the area of Δ ACD using the same formula.

 \bf \: A (Δ ACD) = \large\frac{1}{2} × AC × FD

Plug in the values,

 \bf \: A (Δ ABC) = \large\frac{1}{{ \cancel2}} ×  \cancel{24} × 12

 \bf \: A (Δ ACD) = 12 × 12

 \bf \: A ( Δ ACD ) = 144 sq. m \\  \\  \bf \: A (Δ ACD) = 144 m²

Now we will calculate the area of the quadrilateral shaped field.

 \bf \green{Area \:  of \:  field = Area  \: of  \: Δ ABC + Area  \: of \:  Δ ACD}

 \bf \: Area  \: of \:  field = 72+ 144 \\  \\ \bf \: Area  \: of  \: field = 216 \:  sq.m

 \boxed{ \bf \:Area of quadrilateral shaped field is 252 m²}

Attachments:
Similar questions