Math, asked by Korangadevs2946, 11 months ago

14. The median and mode of the following wage distribution are known to be Rs. 33.5 and Rs. 34 respectively. Three frequency values from the table are however, missing. Find these missing values total 230.



Wages (in Rs)

0-10

10-20

20-30

30-40

40-50

50-60

60-70

Total



Frequency

4

16

?

?

?

6

4

230

Answers

Answered by hukam0685
141

Answer:

x=60

y=100

z=40

Step-by-step explanation:

Median and Modal class will be 30-40

Wages (in Rs)_____freq____CF

0-10________4___________4

10-20_______16________20

20-30_______x________20+x

30-40______y_________20+x+y

40-50______z________20+x+y+z

50-60______6_______26+x+y+z

60-70______4______30+x+y+z

Since total 230

So,

30 + x + y + z = 230 \\  \\ x + y + z = 200 \:  \:  \: ....eq1 \\  \\

Mode=34

\boxed{\blue{\bold{Mode = l + \bigg( \frac{f_1 - f_0}{2f_1 - f_0 - f_2}\bigg ) \times h }}}\\ \\  34 = 30 + \bigg( \frac{y -x }{2y - x - z} \bigg ) \times 10 \\  \\ 4 = ( \frac{y -x }{2y - x - z} ) \times 10 \\  \\ 8y- 4x- 4z = 10y - 10x \\ \\  6x - 2y  - 4z = 0 \\  \\ 3x - y  -  2z = 0 \:  \:  \: ...eq2 \\  \\

Median=33.5

\boxed{\green{\bold{Median = l +  \bigg(\frac{ \frac{n}{2} - cf }{f} \bigg) \times h}}} \\  \\ 33.5 = 30 + \bigg (\frac{115 -20 - x }{y}\bigg)  \times 10 \\  \\ 3.5 =  \frac{95 - x}{y}  \times 10 \\  \\  \frac{35y}{100}  = 95 - x \\  \\ 35y + 100x = 9500...eq3 \\  \\

from eq1 and eq2

2x +2y + 2z = 400 \\ 3x - y  -  2z = 0 \\   -  -  -  -  -  -  \\ 5x  + y = 400 \:  \:  \: eq4

from eq3 and eq4

 \\ (5x + y = 400) \times 20 \\ \\ 100x + 20y = 8000 \\ 100x  + 35y = 9500\\  ( - ) \:  \:  \:  \: ( - ) \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \:  \: ( - ) \\  -  -  -  -  -  -  -  \\  - 15y =  - 1500 \\  \\ y = 100 \\  \\

Now put value of y in eq3

5x + 100 = 400 \\  \\ 5x = 300 \\  \\ x =  \frac{300}{5}  \\  \\ x = 60 \\  \\

put the value of x and y in eq1

60 + 100 + z = 200 \\  \\ z = 200 - 160 \\ \\  z = 40 \\

Hope it helps you.

Answered by probrainsme104
6

Concept

The median is that the middle value in a very list ordered from smallest to largest. The mode is that the most often occurring value on the list.

Given

The wage distribution is given where the median is Rs.33.5 and therefore the mode is Rs.34.

Find

We have to search out the missing frequencies.

Solution

Let the missing frequencies of the category intervals 20-30,30-40 and 40-50 be f_{1},f_{2} and f_{3} respectively.

Since \sum f_{i}=230.

Therefore,

\begin{aligned}f_{1}+f_{2}+f_{3}&=\sum f_{i}-\left(4+16+6+4\right)\\ &=230-30\\ &=200\end{aligned}                                    ......(1)

As the median is Rs. 33.5, so 30-40 is that the median class.

$$\begin{aligned}\text{Median }&=l+\frac{\frac{n}{2}+c.f.}{f}\times h\\ &=30+\frac{115-(4+16+f_{1})}{f_{2}}\times 10\\ 33.5 &=30+\frac{95+f_{1}}{f_{2}}\times 10\\ 10f_{1}+3.5f_{2}&=950\end{aligned}                             ......(2)

Again mode is 34, therefore, 30-40 is that the modal class and so

$$\begin{aligned}\text{Mode }&=l+\frac{f_{1}-f_{0}}{2f_{1}-f_{0}-f_{2}}\times h\\ 34&=30+\frac{f_{2}-f_{1}}{2f_{2}-f_{1}-f_{3}}\times 10\\ 4&=\frac{10(f_{2}-f_{1})}{2f_{2}-f_{1}-f_{3}}\\ 3f_{1}-f_{2}-2f_{3}&=0\end{aligned}                                 ......(3)

After solving equation (1), (2) and (3), we get

f_{1}=60,f_{2}=100 and f_{3}=40

Hence, the missing values is 60,100 \text{ and }40.

#SPJ2

Similar questions