Math, asked by lalitakarsh, 5 months ago

14.
The radi of two cylinders are in the ratio 5:7 and their heights are in the ratio 3:5. The ratio
of their curved surface area is

Answers

Answered by ShírIey
215

\underline{\bf{\dag} \:\mathfrak{Given\; that\: :}}⠀⠀

  • The radius of two cylinders are in the ratio of 5:7.

:\implies\sf r_{1} : r_{2} = 5 : 7

Also,

  • And, their heights are in the ratio of 3:5.

:\implies\sf h_{1} : h_{2} = 3:5

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀

\star\;\boxed{\sf{\pink{CSA_{\;(cylinder)} = 2\pi r h}}}

:\implies\sf CSA_{\:(ratio)} = \bigg(\dfrac{2\pi r_{1} h_{1}}{2\pi r_2 h_2}\bigg) \\\\\\:\implies\sf CSA_{\:(ratio)} = \Bigg(\dfrac{\cancel{\;2}\; \times \cancel{\frac{22}{7}} \times 5 \times 3}{\cancel{\;2}\times \cancel{\frac{22}{7}} \times 7 \times 5} \Bigg) \\\\\\:\implies\sf  CSA_{\:(ratio)} = \cancel\dfrac{15}{35}\\\\\\:\implies\sf  CSA_{\:(ratio)} = \dfrac{3}{7}\\\\\\:\implies{\underline{\boxed{\sf{\pink{CSA_{\;(ratio)} = 3:7}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \; the\; ratio \; of \: their \: CSA \; is \; \bf{3:7 }.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\boxed{\underline{\underline{\purple{\bigstar \: \bf\:Formula\:Related\:to\:cylinder\:\bigstar}}}}\\ \\

  • \sf Area\:of\:base\:of\:cylinder = \bf{\pi r^2}

  • \sf Total\:Surface\:area\:of\:cylinder = \bf{2 \pi r(r + h)}

  • \sf Curved\:Surface\:area\:of\:cylinder = \bf{2 \pi rh}

  • \sf Volume\:of\:cone = \bf{ \dfrac{1}{3} \times Volume_{\:(cylinder)}}

Anonymous: Awesome! :D
Answered by Anonymous
320

{\large{\bold{\rm{\underline{Correct \; Question}}}}}

★ The radii of two cylinders are in the ratio 5:7 and their heights are in the ratio 3:5. The ratio of their curved surface area is

{\large{\bold{\rm{\underline{Given \; that}}}}}

★ The radii of two cylinders are in the ratio of 5:7

{\longrightarrow} r₁ : r₂ = 5:7

★ Cylinder's heights are in the ratio of 3:5

{\longrightarrow} h₁ : h₂ = 3:5

{\large{\bold{\rm{\underline{To \; find}}}}}

★ The ratio of their curved surface area

{\large{\bold{\rm{\underline{Solution}}}}}

★ The ratio of their curved surface area = 3:7

{\large{\bold{\rm{\underline{Using \; concept}}}}}

★ Formula to find curved surface area of the cylinder.

{\large{\bold{\rm{\underline{Using \; formula}}}}}

★ Curved surface area of the cylinder = 2πrh

{\large{\bold{\rm{\underline{Where,}}}}}

➝ π is pronounced as pi

➝ The value of π is 22/7 or 3.14

➝ r dentoes radius

➝ h denotes height

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

{\sf{\mapsto CSA_{(ratio)} \: = \dfrac{2 \pi r_{1} h_{1}}{2 \pi r_{2} h_{2}}}}

{\sf{\mapsto CSA_{(ratio)} \: = \dfrac{2 \times 3.14 \times 5 \times 3}{2 \times 3.14 \times 7 \times 5}}}

{\sf{\mapsto CSA_{(ratio)} \: = \dfrac{2 \times 3.14 \times 15}{2 \times 3.14 \times 35}}}

{\sf{\mapsto CSA_{(ratio)} \: = \dfrac{6.28 \times 15}{6.28 \times 35}}}

{\sf{\mapsto CSA_{(ratio)} \: = \dfrac{94.20}{219.80}}}

{\sf{\mapsto CSA_{(ratio)} \: = \: \: \: \: \: \dfrac{3}{7}}}

{\sf{\mapsto CSA_{(ratio)} \: = \: \: \: \: 3:7}}

{\frak{Henceforth, \: 3:7 \: is \: ratio \: of \: their \: curved \: surface \: area}}

{\large{\bold{\rm{\underline{Additional \; knowledge}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cylinder \: = \: \pi r^{2}h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Surface \: area \: of \: cylinder \: = \: 2 \pi rh + 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Lateral \: area \: of \: cylinder \: = \: 2 \pi rh}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Base \: area \: of \: cylinder \: = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Height \: of \: cylinder \: = \: \dfrac{v}{\pi r^{2}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: cylinder \: = \:\sqrt \dfrac{v}{\pi h}}}}


amansharma264: Good
Anonymous: Nice! :)
Similar questions