Math, asked by anshtaywade397, 4 months ago

14. The side of a triangle
are 12cm, 35cm and 37 cm
Find its area

Answers

Answered by ShírIey
25

The sides of the triangle are 12 cm, 35 cm and 37 cm.

Using Heron's formula therefore,

:\implies\tt s = \dfrac{a + b + c}{2} \\\\\\:\implies\tt s = \dfrac{12 + 35 + 37}{2} \\\\\\:\implies\tt  s = \cancel\dfrac{84}{2}\\\\\\:\implies{\underline{\boxed{\tt{s = 42\; cm}}}}

\therefore{\underline{\sf{Hence, \; Semiperimeter\;of\;the\;\triangle\;is\;\bf{ 42\;cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀⠀

\bf{\dag} \:\boxed{\sf{\pink{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}

:\implies\tt Area_{\triangle} = \sqrt{s(s - a) (s - b) (s - c)} \\\\\\:\implies\tt Area_{\triangle} = \sqrt{42(42 - 12) (42 - 35) (42 - 37)} \\\\\\:\implies\tt Area_{\triangle} = \sqrt{42 \times 30 \times 7 \times 5}\\\\\\:\implies\tt Area_{\triangle} =  \sqrt{2 \times 3 \times 7 \times 7 \times 5 \times 2 \times 3 \times 5}\\\\\\:\implies\tt Area_{\triangle} = 2 \times 3 \times 5 \times 7\\\\\\:\implies{\underline{\boxed{\tt{Area_{\triangle}  = 210\;cm^2}}}}

\therefore{\underline{\sf{Hence,\;area\;of\;the\:\triangle\;is\; \bf{210\;cm^2 }.}}}

Answered by thebrainlykapil
60

Given :-

  • First Side of Triangle = 12cm
  • Second Side of Triangle = 35cm
  • Third Side of Triangle = 37cm

 \\  \\

To Find :-

  • Area of the Triangle

 \\  \\

Solution :-

Using Heron's Formula :

⇒ S = A + B + C / 2

⇒ S = 12 + 35 + 37 / 2

⇒ S = 47 + 37 / 2

⇒ S = 84 / 2

⇒ S = 42cm

________________

Area of Triangle :

⇒ Area of Triangle = √S ( S-a ) ( S-b ) ( S-c )

⇒ Area = √42 (42 - 12) (42 - 35) (42 - 37)

⇒ Area = √42 ( 30 ) ( 7 ) ( 5 )

⇒ Area = √42 × 30 × 7 × 5

⇒ Area = √1260 × 35

⇒ Area = √44100

⇒ Area = 210cm²

________________

Therefore, The area of triangle is 210cm²

________________

Similar questions