Math, asked by peshane, 4 months ago

14.The sides of a triangular plot are in the ratio 2:3:4 and its perimeter is 450m find
its area.

Answers

Answered by SarcasticL0ve
58

Given: Ratio of sides of a triangular plot is 2:3:4 & it's perimeter is 450 m.

To find: Area of triangular plot?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let sides of triangular plot be 2x, 3x and 4x.

⠀⠀

\underline{\bigstar\:\boldsymbol{Using\: Heron's\:formula\::}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

\sf Here \begin{cases} & \sf{a = \bf{2x}}  \\ & \sf{b = \bf{3x}} \\ & \sf{c = \bf{4x}} \end{cases}\\ \\

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

:\implies\sf s = \dfrac{Perimeter}{2}\\ \\

:\implies\sf s = \cancel{\dfrac{450}{2}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{s = 225\:m}}}}}\;\bigstar\\ \\

Therefore,

⠀⠀⠀⠀

:\implies\sf 225 = \dfrac{2x + 3x + 4x}{2}\\ \\

:\implies\sf 225 = \dfrac{9x}{2}\\ \\

:\implies\sf 9x = 450\\ \\

:\implies\sf x = \cancel{ \dfrac{450}{9}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 50}}}}}\;\bigstar\\ \\

\dag\;{\underline{\frak{Sides\:of\:triangle\:are,}}}\\ \\

  • a = 2x = 2 × 50 = 100 m
  • b = 3x = 3 × 50 = 150 m
  • c = 4x = 4 × 50 = 200 m

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Sides\;of\;triangle\:area\;100\;m,\:150\;m\:and\;200\;m}}}.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Now,\:Putting\:values\:in\;formula,}}}\\ \\

:\implies\sf  \sqrt{225(225 - 100)(225 - 150)(225 - 200)}\\ \\

:\implies\sf \sqrt{225 \times 125 \times 75 \times 25}\\ \\

:\implies\sf \sqrt{(15 \times 15) \times (25 \times 5) \times (25 \times 3) \times (5 \times 5)}\\ \\

:\implies\sf \sqrt{15^2 \times 5^2 \times 5 \times 5^2 \times 3 \times 5^2}\\ \\

:\implies\sf 15 \times 5 \times 5 \times 5 \times \sqrt{5 \times 3}\\ \\

:\implies\sf 1875 \times \sqrt{15}\\ \\

:\implies{\underline{\boxed{\frak{\pink{ 1875 \sqrt{15} \:m^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Area\:of\:triangular\:plot\:is\; \bf{1875 \sqrt{15} \:or\:7261.843\:m^2}.}}}

Answered by Anonymous
46

Answer:

Given :-

  • Sides of triangular plot = 2:3:4
  • Perimeter = 450 m

To Find :-

  • Area

Solution :-

Let sides be x

Firstly let's find all sides of triangle

As we know that Perimeter is the sum of all sides

 \sf \: 2x + 3x + 4x = 450

 \sf \: 9x = 450

 \sf \: x =  \dfrac{450}{9}

 \sf \: x = 50

Let's find angles

 \sf \: 2(50) = 100

 \sf3(50)  = 150

 \sf \: 4(50) = 200

Now,

Let's find its semiperimeter

 \sf \: s =  \dfrac{a + b + c}{2}

 \sf \: s =  \dfrac{100 + 150 + 200}{2}

 \sf \: s =  \dfrac{450}{2}  = 225

Now,

Let's find Area by herons formula.

 \huge \bf \green{\sqrt{s(s - a)(s - b)(s - c)} }

 \tt \mapsto \sqrt{225(225- 100)(225 - 150)(225 - 200)}

 \tt \mapsto \:  \sqrt{225\times 125\times 75 \times 25}

 \tt \mapsto \:  \sqrt{(15 \times 15) (25  \times  5)(25 \times 3)(5 \times 5)}

 \tt\sqrt{15 {}^{2} \times 5{}^{2} \times 5 \times {5}^{2}  \times  }

 \tt \: 1875× \sqrt{15}

 \huge \tt \mapsto 1875× \sqrt{15}{m}^{2}

Diagram :-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}


Anonymous: Awesome!
Similar questions