Math, asked by pankajpandey93, 3 months ago

14)
three numbers are in the ratio 3:5:7 and the average is 30. find the smallest number?​

Answers

Answered by 2601ar
13

Answer:

let the no. be 3x , 5x , 7x

average = sum of no./3

30 = 3x+5x+7x/3

90 = 15x

x = 6

smallest no. = 3x = 3×6 = 18

Step-by-step explanation:

hope it may help u pls pls pls follow me & mark brainliest ^_^

Answered by Anonymous
354

Answer:

\large{ \underline{\frak{\pmb{Given...}}}}

  • ➠ Three numbers are in the ratio 3:5:7.
  • ➠ The average of number is 30.

 \large \underline\frak{ \pmb{To \: Find...}}

  • ➠ The smallest number

 \large\underline\frak{ \pmb{Formula \: Used...}}

 \bigstar\underline{\boxed{\sf {\purple{Average =\dfrac{Sum  \: of \:  Terms }{Number  \: of  \: Terms }}}}}

\large\underline\frak{\pmb{Solution...}}

 \odot \: \bf \red{Let,The \: Numbers...}

  •  \dashrightarrow \sf{3x}
  •  \dashrightarrow\sf{5x}
  •  \dashrightarrow \sf{7x}

\odot \: \bf \red{According \:  To \:  The \:  Question... }

{:\implies\sf{Average =\dfrac{Sum  \: of \:  Terms }{Number  \: of  \: Terms }}}

  • Substituting the numbers

{:\implies\sf{30 =\dfrac{3x+ 5x + 7x}{3}}}

{:\implies\sf{30 =\dfrac{15x}{3}}}

{:\implies\sf{30 \times 3 ={15x}}}

{:\implies\sf{90 ={15x}}}

{:\implies\sf{x =  \dfrac{90}{15} }}

{:\implies\sf{x = \cancel\dfrac{90}{15} }}

{:\implies\sf{x = 6}}

 \bigstar\underline{\boxed{\sf \purple{x = 6}}}

  \odot \: \bf \red{Numbers... }

  •  \dashrightarrow \sf{3 \times 6 = 18}
  •  \dashrightarrow\sf{5 \times 6 = 30}
  •  \dashrightarrow \sf{7 \times 6 = 42}

\large\underline\frak{\pmb{Verification...}}

{:\implies\sf{Average =\dfrac{Sum  \: of \:  Terms }{Number  \: of  \: Terms }}}

  • Substituting the numbers

{:\implies\sf{30 =\dfrac{18+ 30 + 42}{3}}}

{:\implies\sf{30 =\dfrac{90}{3}}}

{:\implies\sf{30 = \cancel\dfrac{90}{3}}}

{:\implies\sf{30 =30}}

\bigstar\underline{\boxed{\sf \purple{LHS=RHS }}}

{\sf\underline{Hence \: Verified }} \:  \small\boxed{ \checkmark}

  • Henceforth,The smallest number is 18..
Similar questions