Math, asked by Vipinchaur, 1 month ago

14/TI 14The sum of five numbers in AP is 40. The product of the first and the last is 28. Find the numbers, DEL On sum of numbers in AP​

Answers

Answered by ripinpeace
151

Step-by-step explanation:

Correct question -

  • The sum of five numbers in AP is 40. The product of the first and the last term is 28. Then find the numbers.

Given -

  • The sum of five numbers in AP is 40.
  • The product of the first and the last term is 28.

Solution -

Let the terms be (a - 2d), (a - d), (a), (a + d), (a + 2d).

According to the first statement,

  \rm\longmapsto \rm{ \bf a - 2d+ a - d +  a + a + d +  a + 2d = 40}

 \rm\longmapsto \rm{ \bf5a = 40}

\rm\longmapsto \rm{ \bf \: a =  \dfrac{ \cancel{40} \:  \:  ^{8} }{ {\cancel5}  \: \:  ^{1} } }

\rm\longmapsto \rm{ \bf \:  \green{a = 8} \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \: (1)}

Now, according to the second statement,

\rm\longmapsto \rm{ \bf \: (a - 2d)(a + 2d) = 28}

\rm\longmapsto \rm{ \bf \: (8 - 2d)(8 + 2d) = 28 \:  \:  \:  \:  \:  \{from \: (1) \}}

\rm\longmapsto \rm{ \bf \:  {8}^{2} -  {2d}^{2}   = 28}

\rm\longmapsto \rm{ \bf \:  64-  4{d}^{2}   = 28}

\rm\longmapsto \rm{ \bf \:  -  4{d}^{2}   = 28 - 64}

\rm\longmapsto \rm{ \bf \:  -  4{d}^{2}   =  - 36}

\rm\longmapsto \rm{ \bf \:  {d}^{2}   =   \dfrac{  {\cancel{- 36}}  \:  \: ^{9} }{{ \cancel - 4}  \:  \: ^{1} }  }

\rm\longmapsto \rm{ \bf \:  {d}^{2}  = 9}

\rm\longmapsto \rm{ \bf \:   \pink{{d}=  ± \:  3}}

Case 1

\rm\longmapsto \rm{ \bf \:   {{d}=  3}}

Hence, A.P is, a - 2d = 8 - 2(3) = 8 - 6 = 2

a - d = 8 - 3 = 5

a = 8

a + d = 8 + 3 = 11

a + 2d = 8 + 2(3) = 8 + 6 = 14

Therefore, the A.P is 2, 5, 8, 11, 14...

Case 2

\rm\longmapsto \rm{ \bf \:   {{d}=  -  3}}

Hence, A.P is, a - 2d = 8 - 2( -3) = 8 + 6 = 14

a - d = 8 - ( -3) = 8 + 3 = 11

a = 8

a + d = 8 + ( -3) = 8 - 3 = 5

a + 2d = 8 + 2( -3) = 8 - 6 = 2

Therefore, the A.P is 14, 11, 8, 5, 2...

Similar questions