Math, asked by muskan2828, 5 months ago

14.Write a quadratic polynomial, sum of whose zeroes is 2 and product is -8.​

Answers

Answered by Anonymous
26

Given:-

  • Sum of zeroes = 2
  • Product of zeroes = -8

To find:-

A quadratic Polynomial

Assumption:-

Let sum of zeroes be \alpha+\beta = 2

Let the product of zeroes be \alpha\beta = -8

Solution:-

We know,

Quadratic Equation is always in the form of:-

\sf{x^2 + (\alpha+\beta)x + \alpha\beta}

Substituting the values,

\sf{x^2 + 2\times x + (-8)}

= \sf{x^2 + 2x -8}

Therefore the quadratic Polynomial is\sf{ x^2 + 2x - 8}

______________________________________

Verification:-

Let us find out the zeroes of polynomial

x² + 2x - 8

= \sf{x^2 + 2x - 8}

By splitting the middle term,

\sf{x^2 + 4x - 2x - 8}

= \sf{x(x+4) -2(x+4)}

= \sf{(x+4)(x-2)}

Either,

\sf{x+4 = 0}

= \sf{x = -4}

Or,

\sf{x-2 = 0}

= \sf{x = 2}

Now Let us find the sum of product of zeroes,

\sf{Sum\:of\:zeroes = \dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^2}}

= \sf{-4+2 = \dfrac{-2}{1}}

= \sf{-2 = -2} [Verified]

\sf{Product\:of\:zeroes = \dfrac{Constant\:Term}{Coefficient\:of\:x^2}}

= \sf{4\times (-2) = \dfrac{-8}{1}}

= \sf{-8 = -8} [Verified]

Therefore the Quadratic Equation is \sf{\boxed{\sf{x^2 + 2x - 8}}} Hence Verified.

______________________________________

Answered by OyeeKanak
28

Answer:

 \Huge \pink{ \overline{ \underline{ {Given}}}}

•Sum \:  of \:  zeroes =2</h3><h3> \\ •Product \:  of  \: zeroes=-8

 \large \green{ \underline{To \:  Find}}

A  \: quadratic \:  Polynomial

  \large \purple{ \underline{Assumption}}

Let  \: sum  \: of \:  zeroes \:  be \:  \alpha  +  \beta  = 2

Let  \: the  \: product  \: of  \: zeroes \:  be \:   \alpha  \beta  =  - 8

 \huge \underline{Solution:-}

we  \: know,

Quadratic  \: Equation  \: is \:  always \:  in \:  \\  the \:  form \:  of

 {x}^{2}  + ( \alpha  +  \beta )x +  \alpha  \beta

 \underline{Substituting \:  the \:  value}

 {x}^{2}  + 2 \times x + ( - 8)

 =  {x}^{2}  + 2x - 8

 \therefore \:  the  \: quadratic  \\ Polynomials  \\ =   {x}^{2}  + 2x - 8

 \huge{ \underline{Verification}}

Let \:  us \:  find \:  out  \: the \:   \\ zeroes  \: of  \: polynomial

 {x}^{2}  + 2x - 8

 =  {x}^{2}  + 2x - 8

 \underline{By  \: spliting \:  the \:  middle \:  terms}

 {x}^{2}  + 4x - 2x - 8

 = x(x + 4) - 2(x + 4)

 = (x + 4)(x - 2)

Either,

x + 4 = 0 \\  = x =  - 4

Or,

x - 2 = 0 \\ x = 2

Now let us find the sum of product of zeroes,

Sum \:  of  \: zeroes =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

 =  - 4 + 2 =  \frac{ - 2}{1}

 =  - 2 =  - 2[Verified]

Product  \: of  \: zeroes =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }

 = 4 \times ( - 2) =  \frac{ - 8}{1}

Therefore \:  the  \: quadratic \:  equation \: \\   is  \:  {x}^{2}  + 2x - 8

Hence Verified.

Similar questions