Math, asked by mahiritesh, 30 days ago

14. X=2+ V3.find the value of x +
X^3+1/x^3​

Answers

Answered by sandy1816
1

x = 2 +  \sqrt{3}  \\  \frac{1}{x}  = 2 -  \sqrt{3} \\  (by \: rationalizing \: denominator) \\ now \:  \:  \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  = ( {x +  \frac{1}{x} })^{3}  - 3(x +  \frac{1}{x} ) \\  =  {4}^{3}  - 3 \times 4 \\  = 64 - 12 \\  = 52

Answered by wonderoflifescupers
0

Step-by-step explanation:

\begin{gathered}x = 2 + \sqrt{3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ (by \: rationalizing \: demoinator) \\ now \: \: \: {x}^{3} + \frac{1}{ {x}^{3} } = ( {x + \frac{1}{x} })^{3} - 3(x + \frac{1}{x} ) \\ = {4}^{3} - 3 \times 4 \\ = 64 - 12 \\ = 52\end{gathered}x=2+3x1=2−3(byrationalizingdenominator)nowx3+x31=(x+x1)3−3(x+x1)=43−3×4=64−12=52</p><p>

Similar questions