Math, asked by kalesaiprakeerth, 8 months ago

146. The line 2x + 3y = 6, 2x+3y=8 cut the x-axis at 4. B respectively. A line l drawn through
the point (2, 2) meets the x-axis at C in such a way that abscissae of A,B and C are in
arithmetic progression. Then the equation of the line l is
[EAMCET 2001]

Answers

Answered by amansharma264
21

EXPLANATION.

 \sf :  \implies \: line \: 2x + 3y = 6 \:  \: and \:  \: 2x + 3y = 8 \:  \: cuts \: x \: axis \: at \: 4.b \\  \\ \sf :  \implies \: line \: l \: is \: drawn \: through \: the \: point \: (2 , 2) \: meets \: the \: x \: axis \: at \: c. \\  \\  \sf :  \implies \: abscissa \: of \: a,b \:  \: and \:  \: c \:  \: are \: in \: ap

 \sf : \implies \: equation \: of \: the \: line \: from \: point \: (2 , 2) \\  \\ \sf : \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\ \sf : \implies \: (y - 2) = m(x - 2) \\  \\  \sf : \implies \: y - 2 = mx \:  - 2m \\  \\ \sf : \implies \: y \:  = mx + 2 - 2m

\sf : \implies \: at \: x \: axis \: y \:  = 0  \\  \\ \sf : \implies \: (0) = mx \: +  2 - 2m \\  \\ \sf : \implies \: x \:  =  \frac{2(m - 1)}{m} \\  \\ \sf : \implies \: coordinates \: are \: ( \frac{2(m - 1)}{m} , \: 0)

 \sf :  \implies \: abscissae \: a,b,c \:  \: are \: in \: ap \: (for \: x \: coordinates) \\  \\ \sf :  \implies \: 3,4, \:  \frac{2(m - 1)}{m} are \: in \: ap \:  \\  \\ \sf :  \implies \: conditions \: of \: an \: ap \:  \implies \: 2b = a  + c

\sf :  \implies \: 2 \times 4 = 3 +  \dfrac{2(m - 1)}{m}  \\  \\ \sf :  \implies \: 8 = 3 +  \frac{2(m - 1)}{m}  \\  \\ \sf :  \implies \: 5 =  \frac{2(m - 1)}{m}  \\  \\ \sf :  \implies \: 5m \:  = 2m - 2 \\  \\ \sf :  \implies \: m \:  =  -  \frac{2}{3}

\sf :  \implies \: equation \: of \: line \:  \\  \\ \sf :  \implies \: y \:  =  \frac{ - 2}{3}x  \:  \: + \:  \: 2 \:  \:  +  \:  \frac{2 \times 2}{3} \\  \\ \sf :  \implies \: y \:  =  \frac{ - 2x}{3}    + 2 +  \frac{4}{3}  \\  \\ \sf :  \implies \: y  =  \frac{ - 2x + 6 + 4}{3}  \\  \\ \sf :  \implies \: 3y =  - 2x + 10 \\  \\ \sf :  \implies \: 3y + 2x = 10

\sf :  \implies \:  \green{{ \underline{equation \: of \: line \:  = 3y + 2x = 10}}}

Similar questions