Math, asked by pds39937, 2 months ago

15.) A class has 175 students. The following description gives the number of 100, physics 70, chemistry 46; mathematics and physics 30; mathematics and chemistry 28; physics and chemistry 23; mathematics, physics and chemistry 18. Find (i) how many students are enrolled in mathematics alone, physics alone and chemistry alone, (ii) the number of students who have not offered any of these subjects.

⏩ Give me. the right answer.. ¯\_(ツ)_/¯⏪​

Answers

Answered by Anonymous
1

Answer:

Ans 60M, 35P, 13C, 22 None.

Here n(U)=175, n(M)=100, n(P)=70

n(C)=46

n(M∩P)=30, n(M∩C)=28

n(P∩C)=28

and n(M∩P∩C)=18

To find n(M∩P

∩C

), n(P∩M

∩C

)

n(C∩M

∩P

)

and n(P

∩M

∩C

)

Now

similarly n(P

∩M

∩C

)=n(P)−n(P∩M)−n(P∩C)+n(P∩M∩C)}

=70−30−23+18=35

n(C∩M

∩P

)=n(C)−n(C∩M)−n(C∩P)+n(C∩M∩P)}

=46−28−23+18=13

and n(M

∩P

∩C

)=n(M∪P∪C)

z

2

ˉ

z

1

ˉ

=(

z

2

−z

1

)

=n(U)−{S

1

∩S

2

∩S

3

}

=n(U)−{n(M)+n(P)+n(C)

−[(M∩P)−n(P∩C)

−(M∩C)+n(M∩P∩C)}

=175−100+70+46−30−23−28+18

175−216−81+18=22

Answered by mishraakanksha1705
1

Step-by-step explanation:

Ans 60M, 35P, 13C, 22 None.

Here n(U)=175, n(M)=100, n(P)=70

n(C)=46

n(M∩P)=30, n(M∩C)=28

n(P∩C)=28

and n(M∩P∩C)=18

To find n(M∩P

∩C

), n(P∩M

∩C

)

n(C∩M

∩P

)

and n(P

∩M

∩C

)

Now

similarly n(P

∩M

∩C

)=n(P)−n(P∩M)−n(P∩C)+n(P∩M∩C)}

=70−30−23+18=35

n(C∩M

∩P

)=n(C)−n(C∩M)−n(C∩P)+n(C∩M∩P)}

=46−28−23+18=13

and n(M

∩P

∩C

)=n(M∪P∪C)

z

2

ˉ

z

1

ˉ

=(

z

2

−z

1

)

=n(U)−{S

1

∩S

2

∩S

3

}

=n(U)−{n(M)+n(P)+n(C)

−[(M∩P)−n(P∩C)

−(M∩C)+n(M∩P∩C)}

=175−100+70+46−30−23−28+18

175−216−81+18=22

Similar questions