Math, asked by lieutenantRohan, 2 months ago

15.
cot (90°-O). sin (90°-0) cot 40°
-(cos²20° + cos270°) = ?
sin
tan 50°
(a) 3
(b) 2
(c)1
(d) 0​

Answers

Answered by mohininithyan1955
1

Answer: Cot(90° - θ).Sin(90°-θ)/Sinθ  + Cot40°/Tan50°  - (Cos²20° + Cos²70°) = 1

Step-by-step explanation: evaluate

cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos square 20 +cos square 70]

Cot(90° - θ).Sin(90°-θ)/Sinθ  + Cot40°/Tan50°  - (Cos²20° + Cos²70°)

Cot(90° - θ) = Cos(90°-θ)/Sin(90°-θ)

=> Cot(90° - θ).Sin(90°-θ) = (Cos(90°-θ)/Sin(90°-θ)) * Sin(90°-θ)

=> Cot(90° - θ).Sin(90°-θ) = Cos(90°-θ)

Cot(90 - θ) = Tanθ  => Cot40° = Cot(90° - 50°)  = tan50°

Cos(90-θ) = Sinθ => Cos20° = Cos(90° - 70°) = Sin(70°)

Using all these

= Sinθ/Sinθ  +  tan50°/Tan50°  - (Sin²70° + Cos²70°)

= 1 + 1 - 1    ( using sin²θ + Cos²θ = 1)

= 1

Cot(90° - θ).Sin(90°-θ)/Sinθ  + Cot40°/Tan50°  - (Cos²20° + Cos²70°) = 1

mark me brainlist  ✌️ ✌️ ✌️ ✌️

Answered by vp989264
3

Answer:

hello

future Indian hero

can we be friends

Similar questions