Math, asked by manojchamiyal4, 2 months ago

15. Factorization of x^2-1-2a-
a^2 is
Select
Search
(x+a+1)(x-a-1)
(x-a+1)(x+a-1)
(x+a+1)(x-a+1)
(x-a-1)(x+a-1)​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {x}^{2} - 1 - 2a -  {a}^{2}

can be rewritten as

\rm  \:  = \: {x}^{2} - (1  + 2a  + {a}^{2})

We know,

 \boxed{ \bf{ {(x + y)}^{2}  \:  =  \:  {x}^{2}  +  {y}^{2}  + 2xy }}

So, using this identity,

\rm  \:  = \: {x}^{2} -  {(1 + a)}^{2}

We know,

 \boxed{ \bf{ {x}^{2}   -  {y}^{2} \:  = (x + y)(x - y)}}

So, using this identity, we get

\rm \:  \:  =  \:(x - 1 - a)(x + 1 + a)

Hence,

\bf :\longmapsto\: {x}^{2} - 1 - 2a -  {a}^{2}  = (x + 1 + a)(x - 1 - a)

Option (1) is correct

Additional Information :-

Let us take few more examples!!!

Question :- Factorize the following :-

\bf :\longmapsto\:(1) \:  \:  {x}^{2}  + 2ax +  {a}^{2}  - 1

can be rewritten as

\rm \:  \:  =  \:( {x}^{2}  + 2ax +  {a}^{2}) - 1

\rm \:  \:  =  \: {(x + a)}^{2}  - 1

\rm \:  \:  =  \: {(x + a)}^{2}  -  {1}^{2}

\rm \:  \:  =  \:(x + a + 1)(x + a - 1)

Hence,

\bf :\longmapsto\:\:  \:  {x}^{2}  + 2ax +  {a}^{2}  - 1 = (x + a + 1)(x + a - 1)

\bf :\longmapsto\:(2) \:  \:   {x}^{4} -  {(y - z)}^{4}

\rm \:  \:  =  \: {( {x}^{2} )}^{2} -  {\bigg( {(y - z)}^{2}  \bigg) }^{2}

\rm \:  \:  =  \:\bigg( {x}^{2}  +  {(y - z)}^{2} \bigg)\bigg( {x}^{2} -  {(y - z)}^{2}  \bigg)

\rm \:  \:  =  \:\bigg( {x}^{2}  +  {(y - z)}^{2} \bigg)\bigg( ({x} - {(y - z)})(x + y - z)  \bigg)

\rm \:  \:  =  \:\bigg( {x}^{2}  +  {(y - z)}^{2} \bigg)\bigg( ({x} - y  + z))(x + y - z)  \bigg)

Similar questions