•15. Find a and ß, if x + 1 and x + 2 are factors of x + 3x2 - 2ax +B.
Answers
Answered by
3
- Find α and ß, if x + 1 and x + 2 are factors of x + 3x²- 2αx + 2β.
- x + 1 and x + 2 are factors of x + 3x² - 2αx +2β.
- The value of α and ß .
According to the question,
(x + 1) and (x + 2) are the factors of x + 3x2 - 2αx + 2β.
- (x + 1) = 0
➝ x = -1
- (x + 2) = 0
➝ x = -2
x + 3x²- 2αx + 2β = 0
For, x = -1
(-1)³ + 3(-1)² - 2α(-1) + 2β =0
-1 + 3 - (- 2α) + 2β = 0
-1 + 3 + 2α + 2β = 0
2 + 2α + 2β = 0
2α + 2β = -2
2(α + β) = -2
(α + β) = -2/2
α + β = -1 -----(1)
x³ + 3x² - 2αx + 2β = 0
For, x = -2
(-2)³ + 3(-2)² - 2(-2)a + 2B = 0
-8 + 3(4) - (- 4α) + 2β = 0
-8 + 12 + 4 α + 2β = 0
4 + 4α + 2β = 0
4α + 2β = 4
2(2α + β) = 4
(2α + β) = 4/2
2α + β = 2 -----(2)
Subtract eq(2) from (1)
α + β = -1 -----(1)
2α + β = 2 -----(2)
- - -
____________
-α = 1
____________
α = -1
-1 + β = -1
β = -1 + 1
β = 0
Similar questions