Math, asked by shayestaahmed6156, 4 months ago

15. Find a quadratic equation whose roots are 3 less than
the roots of the equation x²-14x+29=0​

Answers

Answered by mathdude500
3

{\large {\underline {\blue {\bf {Question}}}}}

  • Find a quadratic equation whose roots are 3 less than the roots of the equation x²-14x+29=0.

{\large {\underline {\blue {\bf {Answer}}}}}

 \sf \: Let \: the \: roots \: of \:  {x}^{2}  - 14x + 29 \: be \:  \alpha  \: and \:  \beta.

  • We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

Therefore,

  \bf \longmapsto \:  \bf \: \alpha +   \beta  =  -  \: \dfrac{ - 14}{1}

 \boxed{ \pink{\bf :\implies\: \alpha  +  \beta   =  14}} -  - (1)

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

Therefore,

  \bf \longmapsto \:  \bf \: \alpha  \beta  = \dfrac{29}{1}

 \boxed{ \pink{\bf :\implies\: \alpha  \beta  = 49  }}

Now,

We have to find a quadratic equation whose roots are

 \bf \:  \alpha  \:  - 3 \: and \:  \beta  \:  -  \: 3

So,

  \bf \longmapsto \:  \bf \:Sum  \: of \:  zeroes  =  \alpha  - 3 +  \beta  - 3

  \bf \longmapsto \:  \bf \:Sum \:  of \:  zeroes  =  \alpha  +  \beta  - 6

  \bf \longmapsto \:  \bf \:Sum \:  of \:  zeroes  = 14 - 6

   \boxed{ \red{\bf \longmapsto \:  \bf \:Sum  \: of \:  zeroes  \:  = 8}}

Now,

  \bf \longmapsto \:  \bf \:Product \: of \: zeroes = ( \alpha  - 3)( \beta  - 3)

 \bf \longmapsto \:  \bf \:Product \: of \: zeroes =  \alpha  \beta  - 3 \alpha  - 3 \beta  + 9

 \bf \longmapsto \:  \bf \:Product \: of \: zeroes = 29 - 3( \alpha +   \beta ) + 9

 \bf \longmapsto \:  \bf \:Product \: of \: zeroes = 38 - 3 \times 14

 \bf \longmapsto \:  \bf \:Product \: of \: zeroes = 38 - 42

\boxed{\purple{  \bf \longmapsto \:  \bf \: Product\ of\ the\ zeroes= - 4}}

Hence,

The required Quadratic polynomial is given by

  \bf \longmapsto \:  \bf \: {x}^{2}  - (Sum \:  of  \: zeroes )x + Product \: of \: zeroes = 0

  \bf \longmapsto \:  \bf \: {x}^{2}  - 8x  - 4= 0

Similar questions