Math, asked by harigoudguthula, 7 months ago

15. Find a relation between x and y such that the point (x, y) is equidistant from the points(-2, 8) and (-3,-5)​

Answers

Answered by abhi569
33

Step-by-step explanation:

   Using distance formula:

⇒ √(-2 - x)² + (8 - y)² = √(-3 - x)² + (-5 - y)²

⇒ (-2 - x)² + (8 - y)² = (-3 - x)² + (-5 - y)²

⇒ (2 + x)² - (3 + x)² = (5 + y)² - (8 - y)²

⇒ (2 + x + 3 + x)(2 + x - 3 - x) = (5 + y + 8 - y)(5 + y - 8 + y)

⇒ (5 + 2x)(-1) = (13)(-3 + 2y)

⇒ - 5 - 2x = - 39 + 26y

⇒ 2x + 26y = 34

⇒ x + 13y = 17

Answered by ItzCuteboy8
137

Given :-

  • The point (x, y) is equidistant from the points (- 2, 8) and (- 3, - 5)

To Find :-

  • A relation between ‘x’ and ‘y’

Formula :-

We know that,

 \boxed{\sf\sqrt{(x_1 - x_2)^{2} +(y_1 - y_2)^{2}}} \:  \: (\bf Distance \:  Formula)

Solution :-

:\implies\sf \sqrt{ { (- 2 - x)}^{2} +  {(8 - y)}^{2}  } =   \sqrt{ {( - 3 - x)}^{2} + ( - 5 - y)^{2} }

:\implies\sf {( - 2 - x)}^{2} +  {(8 - y)}^{2} =  {( - 3 - x)}^{2}  +  {( - 5 - y)}^{2}

:\implies\sf {(2 + x)}^{2}  -  {(3 + x)}^{2} =  {(5 + y)}^{2} -  {(8 - y)}^{2}

:\implies\sf(2 + x + 3 + x)(2 + x - 3 - x) = (5 + y + 8  - y)(5 + y - 8 + y)

:\implies\sf(5 + 2x)( - 1) = (13)( - 3 + 2y)

:\implies\sf - 5 - 2x =  - 39 + 26y

:\implies\sf - 2x - 26y =  - 39 + 5

:\implies\sf  - 2x - 26y =  - 34

:\implies\sf  - 2\:(x + 13y) =  - 34

:\implies\sf  x + 13y =  \frac{\cancel{- 34}}{\cancel{- 2}}

:\implies\sf x + 13y = 17

Similar questions