Math, asked by sonidivakar007123, 7 months ago


15. Find the curved surface area, the total surface area and the volume of a cylinder, the
diameter of whose base is 7 cm and height being 60 cm. Also, find the capacity of the
cylinder in litres

Answers

Answered by Anonymous
10

Given:-

  • Diameter= 7cm
  • Height = 60cm

\rule{60mm}{2pt}

To find:-

  • Curved surface area of cylinder.
  • Total surface area of cylinder.
  • Volume of cylinder.

\rule{60mm}{2pt}

For curved surface area of cylinder:-

Radius = \sf \dfrac{diameter}{2} =\sf  \dfrac{7}{2}

Height = 60cm

According to the following formula:-

\large {\boxed {\boxed {\red {\sf {Curved\: surface\: area { 2\pi rh} }}}}}

Now, putting values we will get:-

\implies \sf C.S.A = 2\pi  r h \\ \\ \implies \sf 2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times 60 \\ \\ \sf = 1320cm^{2}

For total surface area of cylinder :-

From above we know that radius =\dfrac{7}{2}

Height=60cm

According to the following formula:-

\large {\boxed {\boxed {\red {\sf {Total \: surface \: area = 2\pi \: r(r + h) }}}}}

Putting the value we will get:-

\implies \sf T.S.A = 2\pi \: r(r + h) \\ \\ \implies \sf  2 \times \dfrac{22}{7} \times \dfrac{7}{2} \bigg(\dfrac{7}{2} + 60\bigg) \\ \\ \implies \sf 22 \bigg(\dfrac{127}{2}\bigg) \\ \\ \implies \sf = 11 \times 127 \\ \\ \implies \sf = 1397cm^{2}

For volume of cylinder:-

\sf radius = \dfrac{7}{2}

Height = 60cm

According to the following formula:-

\large {\boxed {\boxed {\red {\sf {Volume = \pi \times r^{2} \times h}}}}}

Putting the values we will get:-

\implies \sf Volume \: of \: cylinder= \pi \times r^{2} \times h \\ \\ \implies \sf \bigg(\dfrac{22}{7} \times 3.5 \times 3.5 \times 60 \bigg) cm^{3} \\ \\ \implies \sf = 2310cm^{3}

\rule{60mm}{2pt}

Capacity in litres:-

\implies \sf 1 \:litre = 1000cm^{3} \\ \\ \implies \sf 1cm^{3} = \dfrac{1}{1000} litre \\ \\ \implies \sf 2310cm^{3} = \dfrac{2310}{1000} litre \\ \\ \implies \sf = 2.31litre

\rule{60mm}{2pt}

So,

curved surface area = 1320cm²

total surface area = 1397cm²

volume= 2310cm³

Capacity of cylinder in litres = 2.31litre

Some formulas to know:-

\implies \sf Total \: surface \: area \: of \: cuboid = 2(lh + bh + lb) \\ \\ \implies \sf Total \: surface \: area \: of \: cube = 6a^{2} \\ \\ \implies \sf  Total \: surface \: area \: of \: cylinder = 2\pi \: r(h + r) \\ \\ \implies \sf Total \: surface \: area\: of \: cone = \pi \: r(l + r) \\ \\ \implies \sf Total \: surface \: area \: of \: Sphere= 4\pi \: r^{2} \\ \\ \implies \sf Total \: surface \: area\: of \: hemisphere= 3\pi \: r^{3}

\rule{60mm}{2pt}

\implies \sf Curved\: surface\: area\: of\: cuboid= 2h(l + b) \\ \\ \implies \sf Curved \: surface\: area\: of \: cube = 4a^{2} \\ \\ \implies \sf Curved \: surface\: area\:of \: cylinder = 2\pi \: r \: h \\ \\ \implies \sf Curved \: surface\: area\: of\: cone = \pi \: r \: l \\ \\ \implies \sf Curved\: surface\: area\: of\: sphere= 4\pi \: r^{2} \\ \\ \implies \sf Curved \: surface\: area\: of \: hemisphere= 2\pi \: r^{2}

\rule{60mm}{2pt}

\implies \sf Volume \: of \: cuboid= l \times b \times h \\ \\ \implies \sf Volume \: of \:cube = a^{3} \\ \\ \implies \sf Volume \: of \: cylinder = \pi \: r^{2}h \\ \\ \implies \sf Volume \: of \: cone = \dfrac{1}{3} \pi \: r^{2}h \\ \\ \implies \sf Volume \: of \: Sphere = \dfrac{4}{3} \pi \: r^{3} \\ \\ \implies \sf Volume \: of \: hemisphere= \dfrac{2}{3} \pi \:r^{3}

Similar questions