Math, asked by suneeethap, 7 months ago

15. Find the equations of the straight lines passing through the point (-3, 2) and making
an angle of 45° with the straight line 3x - y + 4 = 0.​

Answers

Answered by amansharma264
7

EXPLANATION.

=> equation of straight lines passing through

the point (-3,2)

=> making an angle of = 45°

=> straight line = 3x - y + 4 = 0

=> Slope of the equation = -a/b

=> 3x - y + 4 = 0 => -3/-1 = 3 = slope

 \sf :  \implies \:  | \dfrac{ m_{1} -  m_{2}}{1 +  m_{1} m_{2} } |  =  \tan(45 \degree)  \\  \\ \sf :  \implies \:  | \frac{ m_{1}  - 3 }{1 + 3 m_{1}} |  = 1 \\  \\ \sf :  \implies \:  \pm \: ( \frac{m_{1} \:  - 3 }{1 + 3 m_{1} } ) = 1

\sf :  \implies \:  m_{1} - 3 = 1 + 3 m_{1} \\  \\ \sf :  \implies \:  - 3 - 1 = 3 m_{1} \:  -  m_{1} \\  \\ \sf :  \implies \:   - 4 = 2 m_{1} \\  \\ \sf :  \implies \:  - 2 =  m_{1} \:  \:  \: .....(1)

\sf :  \implies \:  - ( m_{1} - 3) = 1 + 3 m_{1} \\  \\ \sf :  \implies \:  -  m_{1} + 3 = 1 + 3m_{1} \\  \\ \sf :  \implies \: 3 - 1 = 3 m_{1} +  m_{1} \\  \\ \sf :  \implies \: 2 = 4 m_{1} \\  \\ \sf :  \implies \:  m_{1} \:  =  \frac{1}{2}  \:  \:  \: .....(2)

=> Line Passing through point = (-3,2)

\sf :  \implies \: equation \: of \: line \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\ \sf :  \implies \: (y - (2)) =  - 2(x - ( - 3)) \\  \\ \sf :  \implies \: (y - 2) =  - 2(x + 3) \\  \\ \sf :  \implies \: y - 2 =  - 2x - 6 \\  \\ \sf :  \implies \: y + 2x =  - 4

\sf :  \implies \: (y - 2) =  \dfrac{1}{2} (x - ( - 3)) \\  \\ \sf :  \implies \: (y -  2) =  \frac{1}{2} (x + 3) \\  \\ \sf :  \implies  \: 2(y -  2) = (x + 3) \\  \\ \sf :  \implies \: 2y - 4 = x + 3 \\ \\ \sf :  \implies \: 2y - x = 7

Similar questions