15. If (0,0) and (3, 13) are two vertices of an
equilateral triangle, then find third vertex.
Answers
Let ABC is an equilateral triangle in which A(0, 0) and B(3, 13) are given then we have to find third vertex C(x, y) (let)
here, AB = BC = CA
from distance formula,
AB = √(3² + 13²) = √(178)
BC = √{(x - 3)² + (y - 13)²}
CA = √{x² + y²}
so, √178 = √{(x - 3)² + (y - 13)²} = √(x² + y²)
from √(178) = √(x² + y²)
or, x² + y² = 178 .......(1)
from √{(x - 3)² + (y - 13)²} = √{x² + y²}
or, (x - 3)² + (y - 13)² = x² + y²
or, - 6x + 9 - 26y + 169 = 0
or, -3x - 13y + 89 = 0
or, 3x + 13y = 89 ......(2)
from equations (1) and (2),
x² + (89 - 3x)²/169 = 178
or, 169x² + 89² + 9x² - 6x × 89 = 178 × 169
or, 178x² + 89² - 6x × 89 = 178 × 169
or, 2x² + 89 - 6x = 338
or, 2x² - 6x - 249 = 0
or, x = {6 ± √(36 + 1992)}/4
= (3± 13√3)/2
= (3 + 13√3)/2 , (3 - 13√3)/2
and y = (89 - 3x)/13 = (13 3√3)/2
hence, if x = (3 + 13√3)/2 , y = (13 - 3√3)/2
and if x = (3 - 13√3)/2 , y = (13 + 3√3)/2