Math, asked by TabishAnis, 9 months ago


15. If 3cot a = 2 then prove that
(4sina- 3cosa)/(2 sina + 6 cosa) =1/3

Answers

Answered by BrainlyConqueror0901
3

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 3 \: cot \: a = 2 \\  \\  \red{\underline \bold{To \: Prove :}} \\   \tt:  \implies  \frac{4 \: sin \: a  - 3 \: cos \: a}{2 \: sin \: a  +  6 \: cos \: a}  =   \frac{1}{3}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies 3 \: cot \: a = 2 \\  \\ \tt:  \implies cot \: a =  \frac{2}{3}   -  -  -  -  - (1)\\  \\ \tt:  \implies cot \:  a =  \frac{b}{p}  -  -  -  -  - (2) \\  \\  \text{From \: (1) \: and \: (2)} \\  \tt:  \implies p = 3 \\  \\ \tt:  \implies b = 2 \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\ \tt:  \implies  {h}^{2}  =  {3}^{2}  +  {2}^{2}  \\  \\ \tt:  \implies  {h}^{2}  = 9 + 4 \\  \\ \tt:  \implies h  = \sqrt{13}  \\  \\  \bold{For \: finding \: value } \\ \tt:  \implies  \frac{4 \: sin \: a - 3 \: cos \: a}{2 \: sin \: a + 6 \: cos \: a}   =  \frac{4 \times   \frac{p}{h} - 3 \times  \frac{b}{h}  }{2 \times  \frac{p}{h} + 6 \times  \frac{b}{h}  }

 \tt:  \implies  \frac{4 \: sin \: a - 3 \: cos \: a}{2 \: sin \: a + 6 \: cos \: a}   =  \frac{4 \times  \frac{3}{ \sqrt{13}  }  - 3 \times  \frac{2}{ \sqrt{13} } }{2 \times  \frac{3}{ \sqrt{13} }  +  6 \times \frac{2}{ \sqrt{13} }  }  \\  \\ \tt:  \implies  \frac{4 \: sin \: a - 3 \: cos \: a}{2 \: sin \: a + 6 \: cos \: a}   =  \frac{ \frac{12 - 6}{ \sqrt{13} } }{ \frac{6 + 12}{ \sqrt{13} } }  \\  \\ \tt:  \implies  \frac{4 \: sin \: a - 3 \: cos \: a}{2 \: sin \: a + 6 \: cos \: a}   =  \frac{6}{ \sqrt{13} }  \times  \frac{ \sqrt{13} }{18}  \\  \\  \green{\tt:  \implies  \frac{4 \: sin \: a - 3 \: cos \: a}{2 \: sin \: a + 6 \: cos \: a}   =  \frac{1}{3} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \green{ \huge{ \boxed{ \tt proved}}}

Similar questions