15. If f(x, y) = x^3 + y^2 - 3axy = 0,
dy
can be found out as
dx
ay+x
ay-x
a)
y tax
b)
ay-x?
y--ax
c)
d) none of these
y tax
Answers
Answered by
1
Given, x
2
+y
3
=3axy...(1)
Differentiating equation,
⇒3x
2
+3y
2
dx
dy
=3a(x
dx
dy
+y)
⇒3x
2
+3y
2
dx
dy
=3ax
dx
dy
+3ay
⇒(3y
2
−3ax)
dx
dy
=3ay−3x
2
⇒3(y
2
−ax)
dx
dy
=2(ay−x
2
)
⇒
dx
dy
=
y
2
−ax
ay−x
2
Given, x
2
+y
3
=3axy...(1)
Differentiating equation,
⇒3x
2
+3y
2
dx
dy
=3a(x
dx
dy
+y)
⇒3x
2
+3y
2
dx
dy
=3ax
dx
dy
+3ay
⇒(3y
2
−3ax)
dx
dy
=3ay−3x
2
⇒3(y
2
−ax)
dx
dy
=2(ay−x
2
)
⇒
dx
dy
=
y
2
−ax
ay−x
2
Given, x
2
+y
3
=3axy...(1)
Differentiating equation,
⇒3x
2
+3y
2
dx
dy
=3a(x
dx
dy
+y)
⇒3x
2
+3y
2
dx
dy
=3ax
dx
dy
+3ay
⇒(3y
2
−3ax)
dx
dy
=3ay−3x
2
⇒3(y
2
−ax)
dx
dy
=2(ay−x
2
)
⇒
dx
dy
=
y
2
−ax
ay−x
2
Similar questions