15. If for two square matrices A and B of same order,
A2 = A, B2 = Band (A + B)2 = A + B, then prove
that AB = BA = O.
Answers
Answered by
0
Answer:
(A+B)2 =(A−B)2
Step-by-step explanation:
Given A and B are square matrices
A2 =A, B2 =B, AB =BA =O
(A+B)2 =(A+B)(A+B)
(A+B)2 =A2 + AB + BA + B2
⇒(A+B)2 =A + B (using given properties)
(AB)2 =(AB)(AB) =O
(A−B)2 =(A−B)(A−B)
(A−B)2 =A2 + B2 − AB − BA
⇒(A−B)2 =A + B (using given properties)
∴(A+B)2 =(A−B)2
,
(AB)2=0, and (A−B)2=A+B
MARK ME BRAINLIST AND FOLLOW ME TO KNOW MORE ANSWER FOR UR QUESTIONS
Similar questions