Math, asked by anilupadhyay07, 9 months ago

15. If (sec A-tan A) = x then prove that
(1 + x^2)/(1-x^2)=cosec A.​

Answers

Answered by purbasha64
5

split Sec^2A and Tan^2A using identities in each case

  1. 1+x^2
  2. 1-x^2

Then put the value in LHS

Attachments:
Answered by syed2020ashaels
1

The given question is If (sec A-tan A) = x then prove that

(1 + x^2)/(1-x^2)=cosec A.

It is given that sec A - tan A =x.

we have to prove

 \frac{1 +  {x}^{2} }{ 1 -  {x}^{2}  }  =  \csc(a)

sec A - tan A =x

which implies

x= sec A - tan A.

On squaring both sides, we get

 {x}^{2}  =  {( \sec(a) -  \tan(a) ) }^{2}

we can use the algebraic formula here,

The algebraic formula is

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

 {( \ sec(a) -  \tan(a)  ) }^{2}  =  { \sec}^{2} a \:   +   { \tan }^{2} a - 2 \sec( a ) \tan(a)

In the above equation apply the componendo and dividendo.

 \frac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  =   \frac{ { \sec }^{2} a +  { \tan }^{2} a  -  2 \sec( a)  \tan(a) + 1 }{  { \sec }^{2}  a +  { \tan }^{2} a - 2 \sec(a)  \tan(a)  - 1 }

This is the expansion of an algebraic formula.

 { \tan}^{2} a \:  + 1 =  { \sec}^{2} a

 { \sec}^{2} a - 1 =  { \tan}^{2} a

let us substitute these values in the above division.

 =  \frac{ { \sec }^{2}a  + ( {  \tan }^{2}a + 1) - 2  \sec(a) \tan(a)  }{( { \sec}^{2} a- 1)  + { \tan}^{2} a- 2  \sec(a) \tan(a)   }

 =  \frac{ { \sec }^{2} a +  { \sec}^{2} a - 2 \sec(a)  \tan(a) }{ { \sec }^{2}a  +  { \tan}^{2} a- 2 \sec(a) \tan(a)   }

we can combine the like terms

 =  \frac{2 { \sec}^{2}a - 2 \sec(a) \tan(a)   }{2 { \tan}^{2}a  -2 \sec(a)   \tan(a) }  \\  \frac{2 \sec(a)(( \sec(a)   - \tan(a)) }{2 \tan(a) (( \sec(a)  -  \tan(a) }

On proceeding, we get the value as

 \sec(a)  -  \tan(a) \\  in \: the \: numerator \: and \: denominator \: gets \: cancelled

therefore, the final answer is

 \frac{ \sec(a) }{ \tan(a) }    =  \csc(a)

 \frac{1}{ \cos(a) }  \times  \frac{ \cos(a) }{ \sin(a) }  =  \frac{1}{ \sin(a) }  =  \csc(a)

Hence proved

#spj2

we can find similar questions through the link given below

https://brainly.in/question/23633696?referrer=searchResults

Similar questions