15. If tan 0+ sin 0 =m and tan 0 - sin 0 =n, then m^2– n^2 is equal to
Answers
Answered by
1
Answer:
4√mn
Step-by-step explanation:
tanΘ + sinΘ = m
tanΘ - sinΘ = n
=> mn = tan^2Θ - sin^2Θ
= sin^2Θ/cos^2Θ - sin^2Θ
= sin^2Θ(1/cos^2Θ - 1)
= sin^2Θ(sec^2Θ - 1)
= sin^2Θtan^2Θ
=> √mn = sinΘtanΘ
Now,
m^2 - n^2 = (m + n)(m - n)
= (tanΘ + sinΘ + tanΘ - sinΘ)(tanΘ + sinΘ - tanΘ + sinΘ)
= (2tanΘ)(2sinΘ)
= 4tanΘsinΘ
= 4√mn
Hope it helps :)
Please mark brainliest if it does
Similar questions
Biology,
12 hours ago
Biology,
12 hours ago
Biology,
12 hours ago
History,
1 day ago
Math,
8 months ago
Social Sciences,
8 months ago
Computer Science,
8 months ago