Math, asked by dhruvshembekar12, 11 months ago

15. If two consecutive sides of a rhombus are represented by (3x-6) cm and (x+14)cm, then the
perimeter of the Rhombus is ...
a) 10 cm
b) 24cm
c) 40cm
d) 96cm

Answers

Answered by zoya12515
42

Step-by-step explanation:

here is your answer and once try to solve it yourself

perimeter of the rhombus is 96 cm

Attachments:
Answered by Anonymous
103

AnswEr :

Refrence of Image is in the Diagram :

\setlength{\unitlength}{1.2cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\large{A}}\put(7.7,0.9){\large{B}}\put(9.2,0.7){\large{\sf (3x - 6)}}\put(11.1,0.9){\large{C}}\put(9.9,2.1){\large{O}}\put(8,1){\line(1,0){3}}\put(11,1){\line(1,2){1}}\put(9,3){\line(3,0){3}}\put(11.7,2){\large{\sf (x + 14)}}\put(11,1){\line(-1,1){2}}\put(8,1){\line(2,1){4}}\put(8,1){\line(1,2){1}}\put(12.1,3){\large{D}}\end{picture}

\rule{150}{2}

\underline{\bigstar\:\textsf{Let's Head to the Question Now :}}

\bf{Property :}\:\textsf{All the four sides are equal.}\\\\:\implies\tt BC = CD\\\\\\:\implies\tt (3x-6)=(x+14)\\\\\\:\implies\tt 3x - x = 14 + 6\\\\\\:\implies\tt 2x = 20\\\\\\:\implies\tt x = \dfrac{20}{2}\\\\\\:\implies\tt x = 10

\underline{\bigstar\:\textsf{Side of Rhombous :}}

:\implies\tt BC\qquad or\qquad CD\\\\\\:\implies\tt (3x-6)\:cm\qquad or\qquad(x+14)\:cm\\\\\\:\implies\tt (3(10) - 6)\:cm \qquad or \qquad(10 + 14)\:cm\\\\\\:\implies\tt (30 - 6)\:cm \qquad or \qquad(10 + 14)\:cm\\\\\\:\implies\tt 24\:cm \qquad or \qquad24 \:cm\\\\\textbf{Sides of Rhombous :}\:\sf AB=BC=CD=DA=24 \:cm

\rule{200}{1}

\underline{\bigstar\:\textsf{Perimeter of Rhombous :}}

\dashrightarrow\:\:\tt Perimeter=4  \times Side\\\\\\\dashrightarrow\:\:\tt Perimeter=4 \times 24 \:cm\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt Perimeter=96 \: cm}}}

\therefore\:\underline{\textsf{Perimeter of Rhombous is d) \textbf{96 cm.}}}


Anonymous: Perfect
AbhijithPrakash: Awesome!!
Similar questions