Math, asked by anweshadutta3026, 2 months ago

15) If x+1/x =4
1)x⁴+1/x⁴​

Answers

Answered by MathLoverHannu
16

Answer:

1)x⁴+1/x⁴ = 194

Step-by-step explanation:

 \tt \bold \red{༒︎To Fɪɴᴅ:-}

• Value of x⁴+1/x⁴

\tt \bold \red{༒︎ Given:-}

• x+1/x =4

 \tt \bold \red{༒︎ Formula:-}

 \tt ({x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}

✯Nᴏᴡ ᴘᴜᴛ ᴛʜᴇ ᴠᴀʟᴜᴇ ɪɴ ғᴏʀᴍᴜʟᴀ

 \tt \to {4}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \tt \to16 = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \tt \to{x}^{2}  +  \frac{1}{ {x}^{2} }   = 16 - 2 \\  \tt \to{x}^{2}  +  \frac{1}{ {x}^{2} }   = 14

✯Nᴏᴡ ᴀɢᴀɪɴ ʀᴇᴘᴇᴀᴛ ᴛʜᴇ ᴘʀᴏᴄᴇss ᴛᴏ ғɪɴᴅ Value of x⁴+1/x⁴

 \tt \bold \red{༒︎ Formula:-}

 \tt ({ {x}^{2} +  \frac{1}{ {x}^{2} } )}^{2}  =   { ({x}^{2} )}^{2}   +  \frac{1}{  { ({x}^{2} )}^{2}  }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }

✯Nᴏᴡ ᴘᴜᴛ ᴛʜᴇ ᴠᴀʟᴜᴇ ɪɴ ғᴏʀᴍᴜʟᴀ

 \tt \to {14}^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \\  \tt \to196 = {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \\  \tt \to  {x}^{4}  +  \frac{1}{ {x}^{4} }   = 196 - 2 \\  \tt \to {x}^{4}  +  \frac{1}{ {x}^{4} }   = 194

____________________________________________

❀Tʜᴀɴᴋs ғᴏʀ ǫᴜᴇsᴛɪᴏɴ❀

Answered by vijayanarisetty71
1

Answer:

therefore the answer is "194"

Attachments:
Similar questions