15. If x + 2y = 9 and xy = 7, find the value of x2 + 4y2
Answers
Answered by
0
Given,
x + 2y = 9 and xy = 7
To find,
x² + 4y²
Solution,
Since, xy = 7
x = 7/y
- Now, putting x = 7/y in the equation x + 2y = 9 we get,
⇒ 7/y +2y =9
⇒ 7 + 2y² = 9y
⇒ 2y² - 9y + 7 = 0
Factorizing we get,
⇒ 2y²-7y-2y+7=0
⇒ y(2y-7)-(2y-7)=0
⇒ y-1=0 and 2y-7=0
⇒ y =1 and y =7/2
- So, xy=7 x(1)=7 , we get x = 7 and y =1 and x(7/2)=7 we get x=2 and y=7/2
Therefore, the value of x² + 4y² is-
⇒ (7)²+4(1)² = 49 + 4 = 53
⇒ (2)²+4(7/2)² = 53.
Therefore, if x + 2y = 9 and xy = 7, find the value of x²+ 4y² is 53.
Similar questions