Math, asked by pruthvikaa, 1 month ago


15. If x - y = 7 and xy = 9, find the value of (x²+ y²).​

Answers

Answered by purnendu1996
0

Answer:

I'm happy to answer this

Attachments:
Answered by Anonymous
30

Given:-

• value of x - y = 7 and xy=9.

To Find:-

•Find the value of (x^2+y^2).

Solution:-

we have,

  • x-y = 7
  • xy=9

Using Formula:

 \:  \:  \sf \: ( {a}^{2}  +  {b}^{2} ) =  {(a  - b)}^{2}  + 2ab

Now substitute the given values,

 \:  \: \sf( {x}^{2}  +  {y}^{2} ) =  {(x - y)}^{2}  + 2xy \\  \\  \:  \:  \sf \:  =  {(7)}^{2}  + 2 \times 9 \\  \\  \:  \:  \sf \:  = 49 + 18 \\  \\  \:  \:  \sf \:  = 67

Hence,the value of (x^2+y^2) is 67.

_____________________________

Extra Info...

 \:  \:  \sf \implies \:  {(a + b)}^{2} =  {a}^{2}   +  {b}^{2}  + 2ab \\  \\  \:  \:  \sf \implies \:  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\  \:  \:  \sf \: ( {a}^{2}  -  {b}^{2} ) = (a + b)(a - b)

Similar questions