15. In a AABC, AB = AC and D is a point on AB,
such that AD = DC = BC. Then, ZBAC is
(a) 40°
(b) 45° (C) 30° (d) 36
Answers
Answer:
I think the answer is (d) 36
Step-by-step explanation:
CD=BC
angle DBC = angle BDC = x
AB = AC
So, angle ABC = angle ACB = x
angle ABC+ angle BCA+ angle BAC = 180
angle BAC+ x+ x= 180
angle BAC= 180 - 2x
AD=CD
So, angle ACD = angle DAC
sO, angle DAC = 180-2x
angle BCD = angle ACB - angle ACD = x-(180-2x) = 3x-180
angle BDC+ angle DBC+ angle BCD = 180
x+ x+ 3x= 180
5x = 180
x = 72
angle BAC = 180-2x = 180-2(72) = 36
Answer:
attached pic
Step-by-step explanation:
As, angles opposite to the equal sides are always equal.
So, \angle DBC = \angle BDC = x∠DBC=∠BDC=x (Let)
As, AB = AC
So, \angle ABC = \angle ACB = x∠ABC=∠ACB=x
In triangle ABC,
By angle sum property of the triangle ABC, we get
\angle ABC+ \angle BCA+ \angle BAC = 180^\circ∠ABC+∠BCA+∠BAC=180
∘
\angle BAC+ x+ x= 180^\circ∠BAC+x+x=180
∘
\angle BAC= 180^\circ - 2x∠BAC=180
∘
−2x
As, AD=CD
So, \angle ACD = \angle DAC∠ACD=∠DAC
sO, \angle DAC = 180^\circ-2x∠DAC=180
∘
−2x
Now, consider \angle BCD = \angle ACB - \angle ACD = x-(180-2x) = 3x-180^\circ∠BCD=∠ACB−∠ACD=x−(180−2x)=3x−180
∘
By angle sum property of the triangle BCD, we get
\angle BDC+ \angle DBC+ \angle BCD = 180^\circ∠BDC+∠DBC+∠BCD=180
∘
x+ x+ 3x= 180^\circx+x+3x=180
∘
5x = 180
x = 72^\circx=72
∘
Now, \angle BAC = 180-2x = 180-2(72) = 36^\circ∠BAC=180−2x=180−2(72)=36
∘
Hence, Proved.
plz follow me