Math, asked by danish921, 4 months ago

15. In a trapezium ABCD,
seg AB || seg DC
seg BD I seg AD,
seg AC I seg BC,
If AD = 15, BC = 15
and AB = 25. Find ACO ABCD)​

Answers

Answered by khanabdulrahman30651
33

Answer:

Draw seg DE ⊥ seg AB, A – E – B  

and seg CF ⊥ seg AB, A – F- B.

In ∆ ACB, ∠ACB = 90° [Given]  ∴ AB2 = AC2 + BC2 [Pythagoras theorem]

 ∴ 252 = AC2 + 152

 ∴ AC2 = 625 – 225 = 40

∴ AC = √400 [Taking square root of both sides]

 = 20 units  Now, A(∆ABC) = 1/2 × BC × AC  Also,

A(∆ABC) = 1/2 × AB × CF

∴ BC × AC = AB × CF

 ∴ 15 × 20 = 25 × CF

∴ CF = (15 x 20)/25 = 12 units  In ∆CFB, ∠CFB 90° [Construction]

 ∴ BC2 = CF2 + FB2 [Pythagoras theorem]

∴ 152 = 122 + FB2

∴ FB2 = 225 – 144

 ∴ FB2 = 81

∴ FB = √81 [Taking square root of both sides]  = 9 units  Similarly, we can show that, AE = 9 units Now, AB = AE + EF + FB [A – E – F, E – F – B]

∴ 25 = 9 + EF + 9

∴ EF = 25 – 18 = 7 units In ⟂CDEF,  seg EF || seg DC [Given, A – E – F, E – F – B]  seg ED || seg FC [Perpendiculars to same line are parallel]

 ∴ ⟂CDEF is a parallelogram.

∴ DC = EF 7 units [Opposite sides of a parallelogram]  A(⟂ABCD) = 1/2 × CF × (AB + CD)  = 1/2 × 12 × (25 + 7)  = 1/2 × 12 × 32

 ∴ A(⟂ABCD) = 192 sq.

Step-by-step explanation:

I HOPE IT WILL HELP U

Similar questions