Math, asked by sky1000000000, 7 months ago

15. In the given figure, ABCD is a square of side 5 cm
inscribed in a circle. Find (i) the radius of the circle (ii) the
area of the shaded region. (Take 1 = 3.14)​

Attachments:

Answers

Answered by Anonymous
22

 \huge \sf{ \boxed{ \underline{ \blue{ \sf{ = 14.25 \: }}}}}

 \sf \huge \underline{Question}

In the given figure, ABCD is a square of side 5 cm inscribed in a circle. Find (i) the radius of the circle (ii) the area of the shaded region. (Take 1 = 3.14)

_________________________________________

 \sf \huge \underline \red{To \: find}

  • radius of the circle

  • the area of the shaded region

_________________________________________

 \sf  \huge\underline \pink{Answer}

  • Ac is the diameter of the circle center 0

  • OC = OA = the radius of the circle

 \tt \blue{given}

  • ABCD is a square of a side is 5cm

 \rm \implies \green{AB = AC= 5cm}

 \tt \implies \red{ABC \: is \: right \: angled \: traingle}

therefore,

 \rm \implies \pink{{ AC}^{2} =A {B}^{2} + A {C}^{2}}

   \: \:  \:  \:  \:     \:  \:  \:  \:  \:  \:  \:  \:  \: \rm \implies \blue{ =  {5}^{2} +  {5}^{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \implies \purple{ = 25 + 25}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm \implies \orange{ = 50cm}

then,

 \tt \implies \red{AC = 5 \sqrt{2}}

 \bf \underline{now \: radius \: of \: circle}

 \:  \:  \:  \:  \:  \:  \:  \:  \bf \implies\pink{OA =  OC =  \dfrac{ AC\: }{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \implies \blue{R=  \dfrac{5 \sqrt{2} }{2}}

________________________________________

 \tt \implies \orange{area \: of \: square = A {C}^{2}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \orange{ =  {5}^{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \orange{ = 25}

_________________________________________

 \tt \implies \red{area \:of \: circle = \pi {r}^{2}}

  • from Given Question

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red{ = 3.14 \times (\dfrac{5 \sqrt{2} }{2} ) {}^{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red{ = 3.14 \times  \dfrac{50}{4}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt \red{ = 39.25}

__________________________________________

  • Now use the area of the shaded region formula

Area of shaded region = Area of circle = area of square

  • area of circle is 39.25

  • area of square is 25

according to this formula

 \rm \orange{ = 39.25 - 25}

 \rm \orange{ = 14.25 {cm}^{2}}

Answered by Anonymous
28

Answer ▬

hlo

▬▬▬▬▬▬▬❤❤❤

❤Ac is the diameter of the circle center 0

❤OC = OA = the radius of the circle

\given

ABCD is a square of a side is 5cm

</p><p></p><p>\rm \implies \green{AB = AC= 5cm}⟹AB=AC=5cm</p><p></p><p>\tt \implies \red{ABC \: is \: right \: angled \: traingle}⟹ABCisrightangledtraingle</p><p></p><p></p><p></p><p>\rm \implies \pink{{ AC}^{2} =A {B}^{2} + A {C}^{2}}⟹AC2=AB2+AC2</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm \implies \blue{ = {5}^{2} + {5}^{2}}⟹=52+52</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm \implies \purple{ = 25 + 25}⟹=25+25</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm \implies \orange{ = 50cm}⟹=50cm</p><p></p><p></p><p></p><p>\tt \implies \red{AC = 5 \sqrt{2}}⟹AC=52</p><p></p><p>

</p><p></p><p>\: \: \: \: \: \: \: \: \bf \implies\pink{OA = OC = \dfrac{ AC\: }{2}}⟹OA=OC=2AC</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf \implies \blue{R= \dfrac{5 \sqrt{2} }{2}}⟹R=252</p><p></p><p>________________________________________</p><p></p><p>\tt \implies \orange{area \: of \: square = A {C}^{2}}⟹areaofsquare=AC2</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt \orange{ = {5}^{2}}=52</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt \orange{ = 25}=25</p><p></p><p>_________________________________________</p><p></p><p>

from Given Question</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \tt \red{ = 3.14 \times (\dfrac{5 \sqrt{2} }{2} ) {}^{2}} =3.14×(252)2</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt \red{ = 3.14 \times \dfrac{50}{4}}=3.14×450</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt \red{ = 39.25}=39.25</p><p></p><p>

❤Now use the area of the shaded region formula

Area of shaded region = Area of circle = area of square

✨area of circle is 39.25

✨area of square is 25

✨according to this formula

14.25cm²

Similar questions