Math, asked by balaishu040, 2 months ago

15. lim x-a(√x-√a/x-a)​

Answers

Answered by ItzMissKomal
0

Answer:

Hope this helps you...

Step-by-step explanation:

Attachments:
Answered by mathdude500
0

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:\lim_{x\to\ \: a} \: \dfrac{ \sqrt{x}  -  \sqrt{a} }{x \:  -  \: a}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \:\huge \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

Method : 1

Method : 1Method of Rationalization

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:  ⟼ \bf \:\lim_{x\to\ \: a} \: \dfrac{ \sqrt{x}  -  \sqrt{a} }{x \:  -  \: a}

☆On rationalizing the numerator, we get

\bf \:  ⟼ \bf \:\lim_{x\to\ \: a} \: \dfrac{ \sqrt{x}  -  \sqrt{a} }{x \:  -  \: a}  \times \dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  +  \sqrt{a} }

\bf \:  ⟼ \bf \:\lim_{x\to\ \: a} \: \dfrac{  \cancel{x  \:  -  \: a }}{ (\cancel{x \:  -  \: a})( \sqrt{x}  +  \sqrt{a}) }

\bf \:  ⟼ \dfrac{1}{ \sqrt{a} +  \sqrt{a}  }

\bf \:  ⟼  \: \dfrac{1}{2 \sqrt{a} }

─━─━─━─━─━─━─━─━─━─━─━─━─

Method:- 2

Method:- 2Use of formula :-

\bf \:\lim_{x\to\ \: a} \: \dfrac{  {x}^{n}  -  {a}^{n}  }{x \:  -  \: a}  = n \:  {a}^{n - 1}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:  ⟼ \bf \:\lim_{x\to\ \: a} \: \dfrac{ \sqrt{x}  -  \sqrt{a} }{x \:  -  \: a}

\bf \:  ⟼ \bf \:\lim_{x\to\ \: a} \: \dfrac{ {x}^{ \frac{1}{2} } -  {a}^{ \frac{1}{2} }  }{x \:  -  \: a}

\bf \:  ⟼  \:  = \dfrac{1}{2}  \:  {a}^{(\dfrac{1}{2}  - 1)}

\bf \:  ⟼  \:  = \dfrac{1}{2}  \:  {a}^{ \bigg( - \dfrac{1}{2}  \bigg)}

\bf \:  ⟼  \:  =  \: \dfrac{1}{2 \sqrt{a} }

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions