Math, asked by prakhar5959, 1 year ago

15. Prove that :
a + b + c / (a^-1*b^-1 )+( b^-1*c^-1) + (c^-1*a^- 1 ) = abc


pls tell it I will it as excellent​

Answers

Answered by Anonymous
1

Answer:

Prove:

a+b+c / (a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc

Proof:

Taking LHS

Following Steps:

a+b+c/(1/ab+1/bc+1/ca)

a+b+c/(c+a+b)/abc

On taking reciprocal

a+b+c ×.abc/c+a+b

abc=RHS

Hence proved

Answered by RvChaudharY50
85

\large\boxed{\underline{\mathcal{\red{Q}\green{u}\pink{e}\orange{s}\blue{ti}\red{on.??}}}}

Prove that :----

 \frac{a + b + c}{( {a}^{ - 1}  {b}^{ - 1}) + ( {b}^{ - 1}  {c}^{ - 1} + ( {c}^{ - 1} {a}^{ - 1} )}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • a^(-1) = 1/a
  • b^(-1) = 1/b
  • c^(-1) = 1/c

\large\boxed{\underline{\mathcal{\red{A}\green{n}\pink{s}\orange{w}\blue{e}\red{r}}}}

using this in denominator we get,,,,

 \red\leadsto \:   \green{\frac{a + b + c}{ \frac{1}{ab}  +  \frac{1}{bc}  +  \frac{1}{ca} } } \\  \\ \red\leadsto \:   \pink{\frac{a + b + c}{( \frac{a + b + c}{abc} )}} \\  \\ \red\leadsto \blue{ \cancel{(a + b + c)} \times  \frac{abc}{ \cancel{(a + b + c)}} } \\  \\ \red\leadsto \:  \red{\large\boxed{\bold{abc}}}

 \textbf{Hence, Proved}

\large\underline\textbf{Hope it Helps You.}

Similar questions