Math, asked by roayadav9911, 4 months ago

15. Prove the following identity, where the angles involved are acute
angles for which the expressions are defined.
1 - cos 0
(cosec 0 - cot 0)
1 + cos​

Attachments:

Answers

Answered by amansharma264
15

EXPLANATION.

 \sf \:  \implies \: ( \csc( \theta) -  \cot( \theta)  ) {}^{2}  =  \dfrac{1 -  \cos( \theta) }{1 +  \cos( \theta) }

 \sf \:  \implies \: from \: LHS \:  = ( \csc( \theta)  -  \cot( \theta)) {}^{2} \\  \\  \sf \:  \implies \: it \: is \: in \: the \: form \: of \: (x - y) {}^{2}    =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\ \sf \:  \implies \: ( \csc {}^{2} ( \theta)  +  \cot {}^{2} ( \theta)  - 2 \csc( \theta) \cot( \theta) ) \\  \\ \sf \:  \implies \: ( \frac{1}{ \sin {}^{2} ( \theta) } \:   +  \:  \frac{ \cos {}^{2} ( \theta) }{ \sin {}^{2} ( \theta)} \:   -  \: 2 \times  \frac{1}{ \sin( \theta) }  \times  \frac{ \cos( \theta) }{ \sin( \theta) } )

\sf \:  \implies \: ( \dfrac{1 +  \cos {}^{2} ( \theta) }{ \sin {}^{2} ( \theta) }  \:  -  \:  \dfrac{2 \cos( \theta) }{ \sin {}^{2} ( \theta) } ) \\  \\ \sf \:  \implies \: ( \dfrac{1 +  \cos {}^{2} ( \theta)  - 2 \cos( \theta) }{ \sin {}^{2} ( \theta) } ) \\  \\ \sf \:  \implies \: ( \frac{ \cos( \theta) - 1 }{ \sin( \theta) } ) {}^{2}  = LHS \:

\sf \:  \implies \: from \: RHS \:  =  \dfrac{1 -  \cos( \theta) }{1 +  \cos( \theta) }  \\  \\\sf \:  \implies \: rationalize \: the \: equation \: we \: get \\  \\  \sf \:  \implies \:  \frac{1 -  \cos( \theta) }{1 +  \cos( \theta) }  \:  \times  \:  \frac{1  -  \cos( \theta) }{1 -  \cos( \theta) }  \\  \\ \sf \:  \implies \:  \frac{(1 -  \cos( \theta)) {}^{2}  }{1 -  \cos {}^{2} ( \theta) }

\sf \:  \implies \:  \dfrac{1 -  (\cos( \theta)) {}^{2}  }{  \sin( \theta) {}^{2}  }  = ( \dfrac{(1 -  \cos\theta)  }{ \sin( \theta) } ) {}^{2}

HENCE PROVED.

Similar questions