Math, asked by devashreegaglani111, 10 months ago

15. The line joining A (2, 3) and B 6, -5) meets the
x-axis at P. Write down the y-coordinate of P. Hence

find the ratio AP : PB.

Answers

Answered by sammane2514
2

Answer:

i). y-coordinate of P is 0

P = ( \frac{7}{2}, \: 0)

ii). AP: PB = 3:5

For such kind of questions use Geogebra app. You'll easily find it on Play Store. Also it is helpful for imagining the equations on 2D plane.

Step-by-step explanation:

Given:

Line joining A (2, 3) and B 6, -5) meets the

x-axis at P.

To Find:

i). Y coordinate of P.

ii). ratio of AP:PB.

Solution:

 Line \: joining \: AB \: 's \: equation \: can \: be \: obtained \: by \: Two-Point \: form. \: i.e. \\  \frac{y - y1}{y1 - y2}  =  \frac{x - x1}{x1 - x2} \\ Here \: (x1, y1) = A(2, 3) \: &amp; \: (x2, y2) = B(6, -5). \\ </p><p>Therefore \\  \frac{(y) - (3)}{(3) - ( - 5)}  =  \frac{(x) - (2)}{(2) - (6)}  \\  \frac{y - 3}{8}  =  -  \frac{ x - 2}{4}  \\  (y - 3) =  -  \frac{8}{4} (x - 2) \\ (y - 3) =  - 2(x - 2) \\ (y - 3) =  (- 2x + 4) \\  2x + y - 7 = 0 \\ Hence \: the \: equation \: of \: Line \: AB \: is:  \\ 2x + y - 7 = 0 \\  \\  As \: P \: lies \: on \:  X \: axis \: y-coordinate of P \: is \: 0\\  Now \: P, \: which \: is \: on \: X \: axis \: lies \: on \:  line \: AB. \\  Hence \: say \: P(x,0) \: satisfies \: equation \: of \: line \: AB. \\ </p><p>Therefore \\ 2(x) + (0) - 7 = 0 \\ x =  \frac{7}{2}  \\ Hence \: x \: coordinate \: of \: P \: is \:  \frac{7}{2}  = 3.5  \\  P(x,0) = P( \frac{7}{2} ,0) \\ \\ ii). \: \\  By distance formula:  \\ d =  \sqrt{ {(x2 - x1)}^{2}  +  {(y2 - y1)}^{2} }^{2} }  \\ Distance \: AP: = d1 = \sqrt{ {(( \frac{7}{2} ) - (2))}^{2}  +  {((0) - (3))}^{2} } \\ AP: = d1 =  \sqrt{ {( \frac{3}{2}) }^{2} + {( - 3)}^{2} }  =  \sqrt{ { (\frac{9}{4})  + (9)} \\ AP: = d1 =  \sqrt{ \frac{45}{4} } \\  \\  Distance \: PB: = d2 = \sqrt{ {(( \frac{7}{2} ) - (6))}^{2}  +  {((0) - ( - 5))}^{2} }  \\ PB: = d2 =  \sqrt{ {( -  \frac{5}{2} )}^{2} +  {(5)}^{2}  }  \\  \sqrt{( \frac{25}{4} ) + (25)} \\  \sqrt{ \frac{125}{4} } \\   Now, AP : PB = d1 : d2 \\  \frac{AP}{PB} =  \frac{ \sqrt{ \frac{45}{4} } }{ \sqrt{ \frac{125}{4} } }  \\ \frac{AP}{PB} =  \frac{ \sqrt{45} }{ \sqrt{125} }  \\\frac{AP}{PB} =  \sqrt{ \frac{45}{125} }  \\ \frac{AP}{PB} =  \sqrt{ \frac{9}{25} }  \\ \frac{AP}{PB} =  \frac{3}{5}  \\ Hence \: AP:PB = 3:5</p><p>

Attachments:
Similar questions