Math, asked by aditic031, 6 months ago

.
15. The parallel sides of a trapezium are 52 cm. and 24 cm. and distance between them is 24 cm. Find its area,

Answers

Answered by Anonymous
53

\huge{\underline{\bf{Given}}}

  • AD = 24cm
  • BC = 52cm
  • Height = 24cm

\huge{\underline{\bf{Figure}}}

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 24\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 52\ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 24\ cm $}\end{picture}

\huge{\underline{\bf{To\: find}}}

  • Area of the trapezium.

\huge{\underline{\bf{Solution}}}

We know that

\underline{\boxed{\tt{\orange{Area\: of\: trapezium = \dfrac{1}{2}(Sum\: of\: parallel\: sides) \times h}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \dfrac{1}{2}(52 + 24) \times 24}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \dfrac{1}{\cancel{2}}(\cancel{76}) \times 24 }

\tt:\implies\: \: \: \: \: \: \: \: {Area = 38 \times 24}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 912cm^2}

Hence, the area of the trapezium is 912cm².

━━━━━━━━━━━━━━━━━━━━━━

Similar questions