Physics, asked by taramahurkar, 10 months ago

15. The road in the question 14 above is

constructed as per the requirements. The

coefficient of static friction between the

tyres of a vehicle on this road is 0.8, will

there be any lower speed limit? By how

much can the upper speed limit exceed in

this case?​

Answers

Answered by ajitasutar2003
90

Ans : 88kmph

No upper limit as the road is banked for theta> 45⁰

Attachments:
Answered by Anonymous
33

 \underline{ \underline{ \underline{\textsf{ \textbf{ \red{\qquad Given : \qquad }}}}}} \\

  • Coefficient of static friction (μ) = 0.8
  • Radius of curvature (r) = 72 m
  • Acceleration due to gravity (g) = 10 m/s²
  • tan θ = 5

\underline{ \underline{ \underline{\textsf{ \textbf{ \purple{\qquad To Find : \qquad }}}}}} \\

  • By how much can the upper speed limit exceed in this case ?

\underline{ \underline{ \underline{\textsf{ \textbf{ \gray{\qquad Solution : \qquad }}}}}} \\

:\implies\sf V_{(minimum)} = \sqrt{rg \Bigg\lgroup\dfrac{\tan( \theta) -  \mu }{1 + \mu\tan( \theta)} \Bigg \rgroup} \\  \\  \\

:\implies\sf V_{(minimum)} = \sqrt{72 \times 10 \Bigg\lgroup\dfrac{5 -  0.8 }{1 +0.8 \times 5} \Bigg \rgroup} \\  \\  \\

:\implies\sf V_{(minimum)} = \sqrt{720 \Bigg\lgroup\dfrac{4.2 }{1 +4} \Bigg \rgroup} \\  \\  \\

:\implies\sf V_{(minimum)} = \sqrt{\dfrac{3024}{5} } \\  \\  \\

:\implies\sf V_{(minimum)} = \sqrt{604.8 } \\  \\  \\

:\implies\sf V_{(minimum)} = 24.592 \:m/s \\  \\  \\

:\implies\sf V_{(minimum)} =  \dfrac{24.592 \times 18}{5} \:km/hr \\  \\  \\

:\implies\sf V_{(minimum)} =  88.5312\:km/hr \\  \\  \\

:\implies \underline{ \boxed{\textsf{\textbf{ V$_{(\text {minimum})}$  $\approx$ 88 km/hr}}}} \\  \\  \\

As θ ≽ 45° there is no upper limit exceed in the case.

Similar questions