15cota=8 cota=8/15
(a) seca = 17/15
Answers
Answer:
Step-by-step explanation:
Answer and explanation:
Given : 15\cot A=8
To find : The other trigonometric ratios of angle A ?
Solution :
We know that,
\cot A=\frac{B}{P}
Where, B is the base and P is the perpendicular
\cot A=\frac{8}{15}
Now, We find hypotenuse
H^2=P^2+B^2
H^2=(15)^2+(8)^2
H^2=225+64
H=\sqrt{289}
H=17
So, H=17 , B=8 , P=15
Answer:
Answer and explanation:
Given : 15\cot A=815cotA=8
To find : The other trigonometric ratios of angle A ?
Solution :
We know that,
\cot A=\frac{B}{P}cotA=
P
B
Where, B is the base and P is the perpendicular
\cot A=\frac{8}{15}cotA=
15
8
Now, We find hypotenuse
H^2=P^2+B^2H
2
=P
2
+B
2
H^2=(15)^2+(8)^2H
2
=(15)
2
+(8)
2
H^2=225+64H
2
=225+64
H=\sqrt{289}H=
289
H=17H=17
So, H=17 , B=8 , P=15
\sin A=\frac{P}{H}=\frac{15}{17}sinA=
H
P
=
17
15
\cos A=\frac{B}{H}=\frac{8}{17}cosA=
H
B
=
17
8
\csc A=\frac{H}{P}=\frac{17}{15}cscA=
P
H
=
15
17
\sec A=\frac{H}{B}=\frac{17}{8}secA=
B
H
=
8
17
\tan A=\frac{P}{B}=\frac{15}{8}tanA=
B
P
=
8
15