15points
hola
pls answer if you know
volume of right circular cone is 9856 cm³ . if the diameter of the base is 28cm 1)find height of cone ,2)slant height,3) CSA of cone
Answers
Answered by
2
Ans: (i) Volume=9856 cm3
Diameter=28cm
Radius=Diameter/2
=28/2=14cm
therefore,
Volume of right circular cone=1/3πR2H
9856 =1/3 x 22/7 x 14 x 14 x H
9856 x 3 = (22 x 196)/ 7 x H
29568 = 616 x H
29568/616= H
therefore, H = 48cm _______(1)
(ii) Height = 48cm [from (1)]
Radius = 14cm
Slant height = ?
Since,
(H)2 + (R)2 = (L)2 [using pythagoras theorem for right circular cone]
(48)2 + (14)2 = (L)2
2304 + 196 = (L)2
2500 =(L)2
Therefore,
L = 50cm
(iii) Curved surface area of the cone = πRL
= 22/7 x 14 x 50
=2200cm2
Answered by
0
Diameter of the base = 28cm
Radius = Diameter/2 = 28/2 = 14cm
(1). Height of cone
volume = 1/3πr²h = 9856cm3
=1/3 ×22/7 × 14 × 14 ×h = 9856cm3
=>h=48cm
(2). Slant Height
For this we can apply pythagoras theorm
r=14cm
h=48cm
r² + h² = l²
14² + 48² = l²
196 + 2304 = l²
2500 = l²
l = ✓2500
l = 50cm
(3). C.S.A.
=πrl
=22/7 × 14 × 50
=2200cm²
Radius = Diameter/2 = 28/2 = 14cm
(1). Height of cone
volume = 1/3πr²h = 9856cm3
=1/3 ×22/7 × 14 × 14 ×h = 9856cm3
=>h=48cm
(2). Slant Height
For this we can apply pythagoras theorm
r=14cm
h=48cm
r² + h² = l²
14² + 48² = l²
196 + 2304 = l²
2500 = l²
l = ✓2500
l = 50cm
(3). C.S.A.
=πrl
=22/7 × 14 × 50
=2200cm²
Similar questions