Math, asked by diya97444, 1 year ago

15th one.................​

Attachments:

Answers

Answered by Anonymous
12

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given Equation,

  \large{\sf{(k - 12)x {}^{2}   - 2(k - 12)x \:  + 2 = 0}}

On comparison with ax² + bx + c = 0

 \sf{a = (k - 12) \:  \: b =  - 2(k - 12) \: and \: c = 2}

Since,the zeros of the equation are equal

\sf{\therefore, the \ discriminant \ is \ equal \ to \ zero}

 \huge {\sf{d = b {}^{2}  - 4ac = 0}}

Putting the values,we get:

 \sf{[ - 2(k - 12)]{}^{2}  - 4(k - 12)(2)} \:  = 0 \\  \\  \rightarrow \:  \sf{4(k - 12) {}^{2}  - 8(k - 12) = 0} \\  \\  \rightarrow \:  \sf{(k - 12) - 2 = 0} \\  \\  \huge{ \rightarrow \:  \underline{ \boxed{ \sf{k = 14}}}}

For k = 14,the given equation has real and equal roots

Answered by Anonymous
102

♠️\huge\bold\green{HELLO}♠️

Given Equation→

\bold\blue{\tt{(k - 12)x {}^{2} - 2(k - 12)x \: + 2 = 0}}

On comparison with ax² + bx + c = 0

\tt{a = (k - 12) \: \: b = - 2(k - 12) \: and \: c = 2}

Since,the zeros of the equation are equal

\tt{\therefore, the \ discriminant \ is \ equal \ to \ zero}

\bold {\tt{d = b {}^{2} - 4ac = 0}}

Putting the values,we get:

\begin{lgathered}\tt{[ - 2(k - 12)]{}^{2} - 4(k - 12)(2)} \: = 0 \\ \\ \rightarrow \: \tt{4(k - 12) {}^{2} - 8(k - 12) = 0} \\ \\ \rightarrow \: \tt{(k - 12) - 2 = 0} \\ \\ \bold{ \rightarrow \: \underline{ \boxed{ \tt{k = 14}}}}\end{lgathered}

For k = 14,the given equation has real and equal roots

Similar questions