Math, asked by virendragupta1234567, 9 months ago

15x+17y=183 25+13y=213​

Answers

Answered by Swarup1998
1

Required solution: x = \dfrac{27}{5} and y = 6.

Step-by-step explanation:

We will solve the equations by Substitution Method.

The given equations are

15x + 17y = 183 ... ... (1)

25x + 13y = 213 ... ... (2)

From (1), we get

15x = 183 - 17y

⇒ x = \dfrac{183-17y}{15} ... ... (3)

Substituting x = \dfrac{183-17y}{15} in (2), we get

25\times\dfrac{183-17y}{15} + 13y = 213

\dfrac{5}{3} (183 - 17y) + 13y = 213

\dfrac{915-85y+39y}{3} = 213

⇒ 915 - 46y = 639

⇒ 46y = 276

y = 6

Putting y = 6 in (3), we get

x = \dfrac{183-17(6)}{15}

= \dfrac{183-102}{15}

= \dfrac{81}{15}

= \dfrac{27}{5}

the required solution is x = \dfrac{27}{5} and y = 6.

#SPJ3

Similar questions