Math, asked by mubassircool2569, 11 months ago

15xsquare -10 √6x+10 roots for the quadratic equation

Answers

Answered by Brâiñlynêha
10

\huge\bf\underline{Solution:-}

\sf \bullet 15x{}^{2}-10\sqrt{6}x+10

  • We have to find the roots of quadratic equation

Now by the formula of quadratic equation

\sf \hookrightarrow ax{}^{2}+bx+c=0

\boxed{\sf{ x=\dfrac{-b\pm \sqrt{b{}^{2}-4ac}}{2a}}}

So

\sf\implies 15x{}^{2}-10\sqrt{6}x+10=0\\ \\ \sf\bullet a=15\:\:\:\:\:\: \bullet b=-10\sqrt{6}\:\:\:\:\:\: \bullet c=10

Put these values in the formula

\sf\implies x=\dfrac{-b\pm  \sqrt{b{}^{2}-4ac}}{2a}\\ \\ \sf\implies x=\dfrac{-(-10\sqrt{6})\pm \sqrt{(-10\sqrt{6}){}^{2}-4\times 15\times 10}}{2\times 15}\\ \\ \sf\implies x=\dfrac{10\sqrt{6}\pm \sqrt{600-600}}{30}\\ \\ \sf\implies x=\dfrac{10\sqrt{6} \pm 0}{30}

● So the roots

\sf\implies taking\:10\: common\\ \\ \sf\implies x=\cancel{\dfrac{10}{10}}\bigg(\dfrac{\sqrt{6}}{3}\bigg)\\ \\ \sf\implies \:\:\: or\:\: x= \cancel{\dfrac{\sqrt{6}}{3}}\\ \\ \sf\implies x=\dfrac{\sqrt{2}}{\sqrt{3}}

  • So the root of this equation is

\boxed{\sf{x=\dfrac{\sqrt{2}}{\sqrt{3}}}}and

\boxed{\sf{x=0}}

Answered by Saby123
2

</p><p>\tt{\purple{\huge{Hello!!! }}}

</p><p>\tt{\red{Given \: - }}

 \tt{ \orange{f(x) = 15 {x}^{2}  -  \sqrt{6} x + 10 \: }}

Attachments:
Similar questions