Math, asked by ashishbirajdar93, 1 month ago

(15y 4 + 10y 3 - 5y 2 ) ÷ 5y 2​

Answers

Answered by parimalappaka
5

Step-by-step explanation:

Changes made to your input should not affect the solution:

 (1): "y2"   was replaced by   "y^2".  3 more similar replacement(s).

STEP1:

y2 Simplify —— 5

Equation at the end of step1:

y2 ((15•(y4))+(10•(y3)))-((3•——)•y2) 5

STEP2:

Multiplying exponential expressions :

 2.1    y2 multiplied by y2 = y(2 + 2) = y4

Equation at the end of step2:

3y4 ((15•(y4))+(10•(y3)))-——— 5

STEP 3 :

Equation at the end of step3:

3y4 ((15 • (y4)) + (2•5y3)) - ——— 5

STEP 4 :

Equation at the end of step4:

3y4 ((3•5y4) + (2•5y3)) - ——— 5

STEP5:Rewriting the whole as an Equivalent Fraction

 5.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  5  as the denominator :

15y4 + 10y3 (15y4 + 10y3) • 5 15y4 + 10y3 = ——————————— = ————————————————— 1 5

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP6:Pulling out like terms

 6.1     Pull out like factors :

   15y4 + 10y3  =   5y3 • (3y + 2) 

Adding fractions that have a common denominator :

 6.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5y3 • (3y+2) • 5 - (3y4) 72y4 + 50y3 ———————————————————————— = ——————————— 5 5

STEP7:

Pulling out like terms :

 7.1     Pull out like factors :

   72y4 + 50y3  =   2y3 • (36y + 25) 

Final result :

2y3 • (36y + 25) ———————————————— 5

Similar questions