Math, asked by siskskje, 3 months ago

16 × 2^n+1 - 4× 2^n ÷ 16 × 2n+2- 2×2^n+2 .
Simplify the following ​

Attachments:

Answers

Answered by 12thpáìn
92

\underline{\underline{\pink{ \mathfrak{ Question}}}}

  •  \sf \dfrac{16 \times  {2}^{n + 1} - 4 \times  {2}^{n}  }{16 \times  {2}^{n + 2} - 2 \times  {2}^{n + 2}  }

    \underline{\underline{\red{ \mathfrak{ Answer \:  =  \blue{\sf  \dfrac{1}{2}} }}}}

     \underline{\underline{\orange{ \mathfrak{ Step  \: by \:  step \:  explanation }}}}

 =  \sf \dfrac{16 \times  {2}^{n + 1} - 4 \times  {2}^{n}  }{16 \times  {2}^{n + 2} - 2 \times  {2}^{n + 2}  }

=  \sf \dfrac{ {2}^{4}  \times  {2}^{n + 1} -  {2}^{2}  \times  {2}^{n}  }{ {2}^{4}  \times  {2}^{n + 2} - 2 \times  {2}^{n + 2}  }

=  \sf \dfrac{ {2}^{n + 5}   -  {2}^{n + 2}  }{ {2}^{n + 6}   -  {2}^{n + 3}  }

=  \sf \dfrac{ {2}^{n + 5}   -  {2}^{n + 2}  }{2 \times  {2}^{n + 5}   - 2 \times  {2}^{n + 2}  }

=  \sf \dfrac{  \:  \: {2}^{n + 5}   -  {2}^{n + 2}  }{2(   {2}^{n + 5}   -   {2}^{n + 2} ) }

=  \sf \dfrac{  \cancel{  {2}^{n + 5}   -  {2}^{n + 2 } } ^{}  }{2 \cancel{  (   {2}^{n + 5}   -   {2}^{n + 2} )   } ^{} }

  \sf \:  =  \green{\dfrac{1}{2} }\\\\\\

Laws of exponents

  • \tt{a}^{m} \times  {a}^{n}  =  {a}^{m + n}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {a}^{m}  \div   {a}^{n}  =   {a}^{m  -  n} \\  \sf{( {a}^{m} ) ^{n} =  {a}^{mn} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a {}^{m}  \times  {n}^{m}  = (ab) ^{m}   } \\   \sf{a}^{0}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   {\frac{ {a}^{m} }{ {b}^{m} }=  \left( \frac{a}{b} \right) ^{m} }
Answered by badolamamta68
2

Step-by-step explanation:

hope this helps you

and you get your answer

Attachments:
Similar questions