Math, asked by yuvraj2890, 9 months ago

16×2^n+1-8×2^n/16×2^n+1-4×2^n+1 find the value of n solve it please.​

Answers

Answered by TRISHNADEVI
2

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:   \tt{ \frac{16 \times 2 {}^{n + 1} - 8 \times2 {}^{n}   }{16 \times 2 {}^{n + 1}  - 4 \times 2 {}^{n + 1} } } \\  \\  \tt{=  \frac{2 {}^{4}  \times2 {}^{n + 1}  - 2 {}^{3} \times 2 {}^{n} }{2 {}^{4}  \times 2 {}^{n + 1}  - 2 {}^{2}  \times 2 {}^{n + 1} } } \\  \\  \tt{ =  \frac{2 {}^{4 + (n + 1) }- 2 {}^{3 + n} }{2 {}^{4 + (n + 1)}  - 2 {}^{2 + (n + 1)} }} \\  \\  \tt{ =  \frac{2 {}^{4 + n + 1}  - 2 {}^{3 + n} }{2 {}^{4 + n + 1}  - 2 {}^{2 + n + 1}}  } \\  \\  \tt{ =  \frac{ \cancel{2 {}^{5 + n}  - 2 {}^{3 + n}} }{ \cancel{2 {}^{5 + n}  - 2 {}^{3 + n} } } } \\  \\  \tt{ = 1}

Answered by Pricilla
0

\huge{ \underline{ \overline{ \mid{ \mathsf{ \: \: SOLUTION \: \: } \mid}}}}

\: \: \: \bf{ \frac{16 \times 2 {}^{n + 1} - 8 \times2 {}^{n} }{16 \times 2 {}^{n + 1} - 4 \times 2 {}^{n + 1} } } \\ \\ \bf{= \frac{2 {}^{4} \times2 {}^{n + 1} - 2 {}^{3} \times 2 {}^{n} }{2 {}^{4} \times 2 {}^{n + 1} - 2 {}^{2} \times 2 {}^{n + 1} } } \\ \\ \bf{ = \frac{2 {}^{4 + (n + 1) }- 2 {}^{3 + n} }{2 {}^{4 + (n + 1)} - 2 {}^{2 + (n + 1)} }} \\ \\ \bf{ = \frac{2 {}^{4 + n + 1} - 2 {}^{3 + n} }{2 {}^{4 + n + 1} - 2 {}^{2 + n + 1}} } \\ \\ \bf{ = \frac{ \cancel{2 {}^{5 + n} - 2 {}^{3 + n}} }{ \cancel{2 {}^{5 + n} - 2 {}^{3 + n} } } } \\ \\ \bf{ = 1}

Similar questions